// Task 1
List(7,2,3,4,5,6).find(_ < 4) // => Some(3)
List(5,6,7,8,9).find(_ < 4) // => None
List(5,6,7,8,9).min // => 5
List(5,6,7,8,9).minOption // => Some(5)
List[Int]().minOption // => None
// Task 2
Try(Some(List(5,6,7,8,9).min)).getOrElse(None)
Try(Some(List[Int]().min)).getOrElse(None)
// Task 3
import scala.util._
import io.Source
val my_url = "https://nms.kcl.ac.uk/christian.urban/"
// fails if there is no file with that name
Source.fromFile("test.txt")("ISO-8859-1").mkString
Source.fromFile("test.txt")("ISO-8859-1").getLines().toList
// encapsulates the failure case as None
Try(Some(Source.fromFile("test.txt")("ISO-8859-1").mkString)).getOrElse(None)
Try(Source.fromFile("test.txt")("ISO-8859-1").mkString).toOption // same but shorter
// for files with propper closing of the file after reading
Using(Source.fromFile("test.txt")("ISO-8859-1"))(_.mkString).toOption
// Task 4 (Higher-Order Functions)
List(7,2,3,4,5,6).find(_ < 4)
List(7,2,3,4,5,6).count(_ % 2 == 0)
List(7,2,3,4,5,6).sortWith(_ > _)
List(7,2,3,4,5,6).filter(_ > 4)
// Task 5 (Maps)
List(7,2,3,4,5,6).map(n => n * n)
for (n <- List(7,2,3,4,5,6)) yield n * n
// The advantages of for-comprehensions is that they
// can be nested and also can contain guards. In such
// cases the translations to maps and filters is a bit
// involved.
// Task 6 (Pattern-Matching)
def my_map(lst: List[Int], f: Int => Int) : List[Int] = {
if (lst == Nil) Nil
else f(lst.head) :: my_map(lst.tail, f)
}
def my_map(lst: List[Int], f: Int => Int) : List[Int] = lst macth {
case Nil => Nil
case x::xs => f(x) :: my_map(xs, f)
}
// Task 7 (Web-Crawler, hard)
// see lecture2.scala
// requires an accumulator that records all pages that have
// already been visited, for example
def crawl(url: String, n: Int, acc : Set[String] = Set()) : Unit = {
if (n == 0) ()
else {
println(s" Visiting: $n $url")
val urls = get_all_URLs(get_page(url))
for (u <- urls) crawl(u, n - 1, acc | urls)
}
}