// Core Part about finding a single tour for a board using the+ −
// Warnsdorf Rule+ −
//==============================================================+ −
+ −
object M4b {+ −
+ −
+ −
// !!! Copy any function you need from file knight1.scala !!!+ −
//+ −
// If you need any auxiliary functions, feel free to + −
// implement them, but do not make any changes to the+ −
// templates below.+ −
+ −
type Pos = (Int, Int) // a position on a chessboard + −
type Path = List[Pos] // a path...a list of positions+ −
+ −
+ −
//(6) Complete the function that calculates a list of onward+ −
// moves like in (2) but orders them according to Warnsdorf’s + −
// rule. That means moves with the fewest legal onward moves + −
// should come first.+ −
+ −
+ −
def ordered_moves(dim: Int, path: Path, x: Pos) : List[Pos] = ???+ −
+ −
+ −
//(7) Complete the function that searches for a single *closed* + −
// tour using the ordered_moves function from (6). This+ −
// function will be tested on a 6 x 6 board. + −
+ −
+ −
def first_closed_tour_heuristics(dim: Int, path: Path) : Option[Path] = ???+ −
+ −
+ −
//(8) Same as (7) but searches for *non-closed* tours. This + −
// version of the function will be called with dimensions of + −
// up to 30 * 30.+ −
+ −
def first_tour_heuristics(dim: Int, path: Path) : Option[Path] = ???+ −
+ −
+ −
+ −
}+ −