// Shunting Yard Algorithm
// Edsger Dijkstra
type Toks = List[String]
def split(s: String) = s.split(" ").toList
abstract class Assoc
case object RA extends Assoc
case object LA extends Assoc
def assoc(s: String) : Assoc = s match {
case "^" => RA
case _ => LA
}
val precs = Map("+" -> 1,
"-" -> 1,
"*" -> 2,
"/" -> 2,
"^" -> 4)
val ops = List("+", "-", "*", "/", "^")
def is_op(op: String) : Boolean = ops.contains(op)
def prec(op1: String, op2: String) : Boolean = assoc(op1) match {
case LA => precs(op1) <= precs(op2)
case RA => precs(op1) < precs(op2)
}
def syard(toks: Toks, st: Toks = Nil, rout: Toks = Nil) : Toks = (toks, st, rout) match {
case (Nil, _, _) => rout.reverse ::: st
case (num::in, st, rout) if (num.forall(_.isDigit)) =>
syard(in, st, num :: rout)
case (op1::in, op2::st, rout) if (is_op(op1) && is_op(op2) && prec(op1, op2)) =>
syard(op1::in, st, op2 :: rout)
case (op1::in, st, rout) if (is_op(op1)) => syard(in, op1::st, rout)
case ("("::in, st, rout) => syard(in, "("::st, rout)
case (")"::in, op2::st, rout) =>
if (op2 == "(") syard(in, st, rout) else syard(")"::in, st, op2 :: rout)
case (in, st, rout) => {
println(s"in: ${in} st: ${st} rout: ${rout.reverse}")
Nil
}
}
def op_comp(s: String, n1: Long, n2: Long) = s match {
case "+" => n2 + n1
case "-" => n2 - n1
case "*" => n2 * n1
case "/" => n2 / n1
case "^" => Math.pow(n2, n1).toLong
}
def compute(toks: Toks, st: List[Long] = Nil) : Long = (toks, st) match {
case (Nil, st) => st.head
case (op::in, n1::n2::st) if (is_op(op)) => compute(in, op_comp(op, n1, n2)::st)
case (num::in, st) => compute(in, num.toInt::st)
}
compute(syard(split("3 + 4 * ( 2 - 1 )"))) // 7
compute(syard(split("10 + 12 * 33"))) // 406
compute(syard(split("( 5 + 7 ) * 2"))) // 24
compute(syard(split("5 + 7 / 2"))) // 8
compute(syard(split("5 * 7 / 2"))) // 17
compute(syard(split("9 + 24 / ( 7 - 3 )"))) // 15
compute(syard(split("4 ^ 3 ^ 2"))) // 262144
compute(syard(split("4 ^ ( 3 ^ 2 )"))) // 262144
compute(syard(split("( 4 ^ 3 ) ^ 2"))) // 4096
syard(split("3 + 4 * 8 / ( 5 - 1 ) ^ 2 ^ 3")) // 3 4 8 * 5 1 - 2 3 ^ ^ / +
compute(syard(split("3 + 4 * 8 / ( 5 - 1 ) ^ 2 ^ 3")))
compute(syard(split("( 3 + 1 ) ^ 2 ^ 3"))) // 65536
def pow(n1: Long, n2: Long) = Math.pow(n1, n2).toLong