// Core Part about Regular Expression Matching
//=============================================
object M3 {
// Regular Expressions
abstract class Rexp
case object ZERO extends Rexp
case object ONE extends Rexp
case class CHAR(c: Char) extends Rexp
case class ALTs(rs: List[Rexp]) extends Rexp // alternatives
case class SEQ(r1: Rexp, r2: Rexp) extends Rexp // sequence
case class STAR(r: Rexp) extends Rexp // star
// some convenience for typing in regular expressions
//the usual binary choice can be defined in terms of ALTs
def ALT(r1: Rexp, r2: Rexp) = ALTs(List(r1, r2))
import scala.language.implicitConversions
import scala.language.reflectiveCalls
def charlist2rexp(s: List[Char]): Rexp = s match {
case Nil => ONE
case c::Nil => CHAR(c)
case c::s => SEQ(CHAR(c), charlist2rexp(s))
}
implicit def string2rexp(s: String): Rexp = charlist2rexp(s.toList)
implicit def RexpOps (r: Rexp) = new {
def | (s: Rexp) = ALT(r, s)
def % = STAR(r)
def ~ (s: Rexp) = SEQ(r, s)
}
implicit def stringOps (s: String) = new {
def | (r: Rexp) = ALT(s, r)
def | (r: String) = ALT(s, r)
def % = STAR(s)
def ~ (r: Rexp) = SEQ(s, r)
def ~ (r: String) = SEQ(s, r)
}
// (1) Complete the function nullable according to
// the definition given in the coursework; this
// function checks whether a regular expression
// can match the empty string and Returns a boolean
// accordingly.
def nullable (r: Rexp) : Boolean = r match {
case ZERO => false
case ONE => true
case CHAR(_) => false
case ALTs(rs) => rs.exists(nullable)
case SEQ(r1, r2) => nullable(r1) && nullable(r2)
case STAR(_) => true
}
// (2) Complete the function der according to
// the definition given in the coursework; this
// function calculates the derivative of a
// regular expression w.r.t. a character.
def der (c: Char, r: Rexp) : Rexp = r match {
case ZERO => ZERO
case ONE => ZERO
case CHAR(d) => if (c == d) ONE else ZERO
case ALTs(rs) => ALTs(rs.map(der(c, _)))
case SEQ(r1, r2) =>
if (nullable(r1)) ALT(SEQ(der(c, r1), r2), der(c, r2))
else SEQ(der(c, r1), r2)
case STAR(r1) => SEQ(der(c, r1), STAR(r1))
}
def flts(rs: List[Rexp]) : List[Rexp] = rs match {
case Nil => Nil
case ZERO::tl => flts(tl)
case ALTs(rs1)::rs2 => rs1 ::: flts(rs2)
case r::rs => r :: flts(rs)
}
// (3) Complete the simp function according to
// the specification given in the coursework; this
// function simplifies a regular expression from
// the inside out, like you would simplify arithmetic
// expressions; however it does not simplify inside
// STAR-regular expressions.
def simp(r: Rexp) : Rexp = r match {
case ALTs(rs) => (flts(rs.map(simp)).distinct) match {
case Nil => ZERO
case r::Nil => r
case rs => ALTs(rs)
}
case SEQ(r1, r2) => (simp(r1), simp(r2)) match {
case (ZERO, _) => ZERO
case (_, ZERO) => ZERO
case (ONE, r2s) => r2s
case (r1s, ONE) => r1s
case (r1s, r2s) => SEQ(r1s, r2s)
}
case r => r
}
// (4) Complete the two functions below; the first
// calculates the derivative w.r.t. a string; the second
// is the regular expression matcher taking a regular
// expression and a string and checks whether the
// string matches the regular expression.
def ders (s: List[Char], r: Rexp) : Rexp = s match {
case Nil => r
case c::s => ders(s, simp(der(c, r)))
}
// main matcher function
def matcher(r: Rexp, s: String) = nullable(ders(s.toList, r))
// (5) Complete the size function for regular
// expressions according to the specification
// given in the coursework.
def size(r: Rexp): Int = r match {
case ZERO => 1
case ONE => 1
case CHAR(_) => 1
case ALTs(rs) => 1 + rs.map(size).sum
case SEQ(r1, r2) => 1 + size(r1) + size (r2)
case STAR(r1) => 1 + size(r1)
}
// some testing data
//matcher(("a" ~ "b") ~ "c", "abc") // => true
//matcher(("a" ~ "b") ~ "c", "ab") // => false
// the supposedly 'evil' regular expression (a*)* b
val EVIL = SEQ(STAR(STAR(CHAR('a'))), CHAR('b'))
//println(matcher(EVIL, "a" * 1000 ++ "b")) // => true
//println(matcher(EVIL, "a" * 1000)) // => false
// size without simplifications
//println(size(der('a', der('a', EVIL)))) // => 28
//println(size(der('a', der('a', der('a', EVIL))))) // => 58
// size with simplification
//println(simp(der('a', der('a', EVIL)))) // => 8
//println(simp(der('a', der('a', der('a', EVIL)))))// => 8
//println(size(simp(der('a', der('a', EVIL))))) // => 8
//println(size(simp(der('a', der('a', der('a', EVIL)))))) // => 8
// Python needs around 30 seconds for matching 28 a's with EVIL.
// Java 9 and later increase this to an "astonishing" 40000 a's in
// around 30 seconds.
//
// Lets see how long it takes to match strings with
// 5 Million a's...it should be in the range of a
// couple of seconds.
def time_needed[T](i: Int, code: => T) = {
val start = System.nanoTime()
for (j <- 1 to i) code
val end = System.nanoTime()
(end - start)/(i * 1.0e9)
}
//for (i <- 0 to 5000000 by 500000) {
// println(i + " " + "%.5f".format(time_needed(2, matcher(EVIL, "a" * i))) + " secs.")
//}
// another "power" test case
//simp(Iterator.iterate(ONE:Rexp)(r => SEQ(r, ONE | ONE)).drop(100).next) == ONE
// the Iterator produces the rexp
//
// SEQ(SEQ(SEQ(..., ONE | ONE) , ONE | ONE), ONE | ONE)
//
// where SEQ is nested 100 times.
}