// Part 1 about finding and counting Knight's tours
//==================================================
object CW7a extends App{
type Pos = (Int, Int) // a position on a chessboard
type Path = List[Pos] // a path...a list of positions
//(1a) Complete the function that tests whether the position
// is inside the board and not yet element in the path.
//def is_legal(dim: Int, path: Path)(x: Pos) : Boolean = ...
def is_legal(dim: Int, path: Path)(x: Pos) : Boolean = {
// if ((x._1<dim && x._2<dim) && (x._1>0 || x._2>0)) false else !path.contains(x)
if (x._1 < 0 || x._2 < 0) false
else if (x._1 < dim && x._2 < dim && !path.contains(x)) true
else false
}
def legal_moves(dim: Int, path: Path, x: Pos) : List[Pos] = {
val allPossibleMoves = List((x._1+1, x._2+2), (x._1+2, x._2+1), (x._1+2, x._2-1), (x._1+1, x._2-2), (x._1-1, x._2-2), (x._1-2, x._2-1), (x._1-2, x._2+1), (x._1-1, x._2+2));
//val finalList = allPossibleMoves.filter((a=>a._1<dim && a._2<dim && x._1 >= 0 && a._2 >= 0));
val finalList = for(pos<-allPossibleMoves if(is_legal(dim,path)(pos))) yield pos;
// println("Space in board: " + dim*dim + " for dim: " + dim)
finalList.toList;
}
println(legal_moves(8, Nil, (2,2)))
println(legal_moves(8, Nil, (7,7)))
println(legal_moves(8, List((4,1), (1,0)), (2,2)))
println(legal_moves(8, List((6,6)), (7,7)))
println(legal_moves(1, Nil, (0,0)))
println(legal_moves(2, Nil, (0,0)))
println(legal_moves(3, Nil, (0,0)))
println("=================================================================================")
println("================================Comparision output===============================")
println("=================================================================================")
println(legal_moves(8, Nil, (2,2)) == List((3,4), (4,3), (4,1), (3,0), (1,0), (0,1), (0,3), (1,4)))
println(legal_moves(8, Nil, (7,7)) == List((6,5), (5,6)))
println(legal_moves(8, List((4,1), (1,0)), (2,2)) == List((3,4), (4,3), (3,0), (0,1), (0,3), (1,4)))
println(legal_moves(8, List((6,6)), (7,7)) == List((6,5), (5,6)))
println(legal_moves(1, Nil, (0,0)) == Nil)
println(legal_moves(2, Nil, (0,0)) == Nil)
println(legal_moves(3, Nil, (0,0)) == List((1,2), (2,1)))
def count_tours(dim: Int, path: Path) : Int = {
val allMovesFromCurrentPosition = legal_moves(dim, path, path.head);
if (path.length == dim*dim) 1 else {
if (allMovesFromCurrentPosition.size == 0 ) 0 else {
allMovesFromCurrentPosition.map( element => count_tours(dim, element::path)).sum
}
}
}
println ( count_tours(5, List((0,0))) )
def enum_tours(dim: Int, path: Path) : List[Path] = {
val allMovesFromCurrentPosition = legal_moves(dim, path, path.head);
if (path.length == dim*dim) List(path) else {
allMovesFromCurrentPosition.map( element => enum_tours(dim, element::path)).flatten ;
}
}
println ( enum_tours(6, List((0,2))).size)
}
//(1b) Complete the function that calculates for a position
// all legal onward moves that are not already in the path.
// The moves should be ordered in a "clockwise" manner.
//def legal_moves(dim: Int, path: Path, x: Pos) : List[Pos] = ...
//some test cases
//
//assert(legal_moves(8, Nil, (2,2)) ==
// List((3,4), (4,3), (4,1), (3,0), (1,0), (0,1), (0,3), (1,4)))
//assert(legal_moves(8, Nil, (7,7)) == List((6,5), (5,6)))
//assert(legal_moves(8, List((4,1), (1,0)), (2,2)) ==
// List((3,4), (4,3), (3,0), (0,1), (0,3), (1,4)))
//assert(legal_moves(8, List((6,6)), (7,7)) == List((6,5), (5,6)))
//(1c) Complete the two recursive functions below.
// They exhaustively search for knight's tours starting from the
// given path. The first function counts all possible tours,
// and the second collects all tours in a list of paths.
//def count_tours(dim: Int, path: Path) : Int = ...
//def enum_tours(dim: Int, path: Path) : List[Path] = ...