// Basic Part about the 3n+1 conjecture
//==================================
// generate jar with
// > scala -d collatz.jar collatz.scala
object CW6a { // for purposes of generating a jar
/*
def collatz(n: Long): Long =
if (n == 1) 0 else
if (n % 2 == 0) 1 + collatz(n / 2) else
1 + collatz(3 * n + 1)
*/
def aux(n: Long, acc: Long) : Long =
if (n == 1) acc else
if (n % 2 == 0) aux(n / 2, acc + 1) else
aux(3 * n + 1, acc + 1)
def collatz(n: Long): Long = aux(n, 0)
def collatz_max(bnd: Long): (Long, Long) = {
val all = for (i <- (1L to bnd)) yield (collatz(i), i)
all.maxBy(_._1)
}
//collatz_max(1000000)
//collatz_max(10000000)
//collatz_max(100000000)
/* some test cases
val bnds = List(10, 100, 1000, 10000, 100000, 1000000)
for (bnd <- bnds) {
val (steps, max) = collatz_max(bnd)
println(s"In the range of 1 - ${bnd} the number ${max} needs the maximum steps of ${steps}")
}
*/
def is_pow(n: Long) : Boolean = (n & (n - 1)) == 0
def is_hard(n: Long) : Boolean = is_pow(3 * n + 1)
def last_odd(n: Long) : Long =
if (is_hard(n)) n else
if (n % 2 == 0) last_odd(n / 2) else
last_odd(3 * n + 1)
//for (i <- 130 to 10000) println(s"$i: ${last_odd(i)}")
//for (i <- 1 to 100) println(s"$i: ${collatz(i)}")
}