// Part 1 about finding and counting Knight's tours
//==================================================
type Pos = (Int, Int) // a position on a chessboard
type Path = List[Pos] // a path...a list of positions
def print_board(dim: Int, path: Path): Unit = {
println
for (i <- 0 until dim) {
for (j <- 0 until dim) {
print(f"${path.reverse.indexOf((j, dim - i - 1))}%3.0f ")
}
println
}
}
def add_pair(x: Pos)(y: Pos): Pos =
(x._1 + y._1, x._2 + y._2)
def is_legal(dim: Int, path: Path)(x: Pos): Boolean =
0 <= x._1 && 0 <= x._2 && x._1 < dim && x._2 < dim && !path.contains(x)
assert(is_legal(8, Nil)((3,4)) == true)
assert(is_legal(8, List((4,1), (1,0)))((4,1)) == false)
assert(is_legal(2, Nil)((0,0)) == true)
def moves(x: Pos): List[Pos] =
List(( 1, 2),( 2, 1),( 2, -1),( 1, -2),
(-1, -2),(-2, -1),(-2, 1),(-1, 2)).map(add_pair(x))
def legal_moves(dim: Int, path: Path, x: Pos): List[Pos] =
moves(x).filter(is_legal(dim, path))
assert(legal_moves(8, Nil, (2,2)) ==
List((3,4), (4,3), (4,1), (3,0), (1,0), (0,1), (0,3), (1,4)))
assert(legal_moves(8, Nil, (7,7)) == List((6,5), (5,6)))
assert(legal_moves(8, List((4,1), (1,0)), (2,2)) ==
List((3,4), (4,3), (3,0), (0,1), (0,3), (1,4)))
assert(legal_moves(8, List((6,6)), (7,7)) == List((6,5), (5,6)))
assert(legal_moves(1, Nil, (0,0)) == List())
assert(legal_moves(2, Nil, (0,0)) == List())
assert(legal_moves(3, Nil, (0,0)) == List((1,2), (2,1)))
def count_tours(dim: Int, path: Path): Int = {
if (path.length == dim * dim) 1
else
(for (x <- legal_moves(dim, path, path.head)) yield count_tours(dim, x::path)).sum
}
def enum_tours(dim: Int, path: Path): List[Path] = {
if (path.length == dim * dim) List(path)
else
(for (x <- legal_moves(dim, path, path.head)) yield enum_tours(dim, x::path)).flatten
}
def count_all_tours(dim: Int) = {
for (i <- (0 until dim).toList;
j <- (0 until dim).toList) yield count_tours(dim, List((i, j)))
}
def enum_all_tours(dim: Int): List[Path] = {
(for (i <- (0 until dim).toList;
j <- (0 until dim).toList) yield enum_tours(dim, List((i, j)))).flatten
}
def add_pair_urban(x: Pos)(y: Pos): Pos =
(x._1 + y._1, x._2 + y._2)
def is_legal_urban(dim: Int, path: Path)(x: Pos): Boolean =
0 <= x._1 && 0 <= x._2 && x._1 < dim && x._2 < dim && !path.contains(x)
def moves_urban(x: Pos): List[Pos] =
List(( 1, 2),( 2, 1),( 2, -1),( 1, -2),
(-1, -2),(-2, -1),(-2, 1),(-1, 2)).map(add_pair_urban(x))
def legal_moves_urban(dim: Int, path: Path, x: Pos): List[Pos] =
moves_urban(x).filter(is_legal_urban(dim, path))
def correct_urban(dim: Int)(p: Path): Boolean = p match {
case Nil => true
case x::Nil => true
case x::y::p => if (legal_moves_urban(dim, p, y).contains(x)) correct_urban(dim)(y::p) else false
}
enum_tours(5, List((0, 2))).map(correct_urban(5)).forall(_ == true)
for (dim <- 1 to 5) {
println(s"${dim} x ${dim} " + count_tours(dim, List((0, 0))))
}
for (dim <- 1 to 5) {
println(s"${dim} x ${dim} " + count_all_tours(dim))
}
for (dim <- 1 to 5) {
val ts = enum_tours(dim, List((0, 0)))
println(s"${dim} x ${dim} ")
if (ts != Nil) {
print_board(dim, ts.head)
println(ts.head)
}
}