// Part 4 about finding a single tour on "mutilated" chessboards
//==============================================================
object M4d { // for preparing the jar
type Pos = (Int, Int)
type Path = List[Pos]
def print_board(dim: Int, path: Path): Unit = {
println()
for (i <- 0 until dim) {
for (j <- 0 until dim) {
print(f"${path.reverse.indexOf((i, j))}%4.0f ")
}
println()
}
}
def add_pair(x: Pos, y: Pos): Pos =
(x._1 + y._1, x._2 + y._2)
def is_legal(dim: Int, path: Path, x: Pos): Boolean =
0 <= x._1 && 0 <= x._2 && x._1 < dim && x._2 < dim && !path.contains(x)
def moves(x: Pos): List[Pos] =
List(( 1, 2),( 2, 1),( 2, -1),( 1, -2),
(-1, -2),(-2, -1),(-2, 1),(-1, 2)).map(add_pair(x, _))
def legal_moves(dim: Int, path: Path, x: Pos): List[Pos] =
moves(x).filter(is_legal(dim, path, _))
import scala.annotation.tailrec
@tailrec
def first(xs: List[Pos], f: Pos => Option[Path]): Option[Path] = xs match {
case Nil => None
case x::xs => {
val result = f(x)
if (result.isDefined) result else first(xs, f)
}
}
def one_tour_pred(dim: Int, path: Path, n: Int, pred: Pos => Boolean): Option[Path] = {
if (path.length == n) Some(path)
else
first(legal_moves(dim, path, path.head).filter(pred), (x: Pos) => one_tour_pred(dim, x::path, n, pred))
}
//print_board(8, one_tour_pred(8, List((0, 0)), 40, x => x._1 < 5).get)
}