// Mandelbrot pictures
//=====================
//
// see https://en.wikipedia.org/wiki/Mandelbrot_set
//
// You can run on the file one the commandline with
//
// scala mandelbrot.sc
//
//
//
// !! UPDATE ON TIMING: On my faster Mac-M1 machine
// !! the times for the first example are ca. 4 secs for
// !! the sequential version and around 0.7 secs for the
// !! par-version.
// for parallel collections
//> using dep org.scala-lang.modules::scala-parallel-collections:1.0.4
import scala.language.implicitConversions.*
import scala.collection.parallel.CollectionConverters.*
// for graphics
import javax.swing.{JFrame, JPanel, WindowConstants}
import java.awt.{Color, Dimension, Graphics, Graphics2D}
import java.awt.image.BufferedImage
// for implicits in comples numbers
import scala.language.implicitConversions
// complex numbers
// represents the complex number re + im * i
case class Complex(val re: Double, val im: Double) {
def +(that: Complex) = Complex(this.re + that.re, this.im + that.im)
def -(that: Complex) = Complex(this.re - that.re, this.im - that.im)
def *(that: Complex) = Complex(this.re * that.re - this.im * that.im,
this.re * that.im + that.re * this.im)
def *(that: Double) = Complex(this.re * that, this.im * that)
def abs() = Math.sqrt(this.re * this.re + this.im * this.im)
}
// to allow the usual mathmo notation n + m * i
object i extends Complex(0, 1)
// implicit conversion from Doubles to Complex
given Conversion[Double, Complex] = Complex(_, 0)
// some customn colours for the "sliding effect" outside
// the mandelbrot set
val colours = List(
Color(66, 30, 15), Color(25, 7, 26),
Color(9, 1, 47), Color(4, 4, 73),
Color(0, 7, 100), Color(12, 44, 138),
Color(24, 82, 177), Color(57, 125, 209),
Color(134, 181, 229), Color(211, 236, 248),
Color(241, 233, 191), Color(248, 201, 95),
Color(255, 170, 0), Color(204, 128, 0),
Color(153, 87, 0), Color(106, 52, 3))
// the viewer panel with an image canvas
class Viewer(width: Int, height: Int) extends JPanel {
val canvas = BufferedImage(width, height, BufferedImage.TYPE_INT_ARGB)
override def paintComponent(g: Graphics) =
g.asInstanceOf[Graphics2D].drawImage(canvas, null, null)
override def getPreferredSize() =
Dimension(width, height)
def clearCanvas(color: Color) = {
for (x <- 0 to width - 1; y <- 0 to height - 1)
canvas.setRGB(x, y, color.getRGB())
repaint()
}
}
// initialising the viewer panel
def openViewer(width: Int, height: Int) : Viewer = {
val viewer = Viewer(width, height)
val frame = JFrame("XYPlane")
frame.add(viewer)
frame.pack()
frame.setVisible(true)
frame.setResizable(false)
frame.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE)
viewer
}
// some hardcoded parameters
val W = 900 // width
val H = 800 // height
val black = Color.black
val viewer = openViewer(W, H)
// draw a pixel on the canvas
def pixel(x: Int, y: Int, color: Color) =
viewer.canvas.setRGB(x, y, color.getRGB())
// calculates the number of iterations using lazy lists (streams)
// the iteration goes on for a maximum of max steps,
// but might leave early when the pred is satisfied
def iterations(c: Complex, max: Int) : Int = {
def next(z: Complex) = z * z + c
def pred(z: Complex) = z.abs() < 2 // exit condition
LazyList.iterate(0.0 * i, max)(next).takeWhile(pred).size
}
// main function
// start and end are the upper-left and lower-right corners,
// max is the number of maximum iterations
def mandelbrot(start: Complex, end: Complex, max: Int) : Unit = {
viewer.clearCanvas(black)
// deltas for each grid step
val d_x = (end.re - start.re) / W
val d_y = (end.im - start.im) / H
for (y <- (0 until H).par) {
for (x <- (0 until W).par) {
val c = start + x * d_x + y * d_y * i
val iters = iterations(c, max)
val colour =
if (iters == max) black
else colours(iters % 16)
pixel(x, y, colour)
}
viewer.updateUI()
}
}
// Examples
//==========
//for measuring time
def time_needed[T](code: => T) = {
val start = System.nanoTime()
code
val end = System.nanoTime()
(end - start) / 1.0e9
}
// example 1
val exa1 = -2.0 + -1.5 * i
val exa2 = 1.0 + 1.5 * i
println(s"${time_needed(mandelbrot(exa1, exa2, 1000))} secs")
// example 2
val exb1 = -0.37465401 + 0.659227668 * i
val exb2 = -0.37332410 + 0.66020767 * i
//time_needed(mandelbrot(exb1, exb2, 1000))
// example 3
val exc1 = 0.435396403 + 0.367981352 * i
val exc2 = 0.451687191 + 0.380210061 * i
//time_needed(mandelbrot(exc1, exc2, 1000))
// some more computations with example 3
val delta = (exc2 - exc1) * 0.01
println(s"${time_needed(
for (n <- (0 to 25))
mandelbrot(exc1 + delta * n,
exc2 - delta * n, 1000))} secs")
// Larry Paulson's example
val exl1 = -0.74364990 + 0.13188170 * i
val exl2 = -0.74291189 + 0.13261971 * i
//println(s"${time_needed(mandelbrot(exl1, exl2, 1000))} secs")
// example by Jorgen Villadsen
val exj1 = 0.10284 - 0.63275 * i
val exj2 = 0.11084 - 0.64075 * i
//time_needed(mandelbrot(exj1, exj2, 1000))
// another example
val exA = 0.3439274 + 0.6516478 * i
val exB = 0.3654477 + 0.6301795 * i
//time_needed(mandelbrot(exA, exB, 1000))