// Part 3 about finding a single tour using the Warnsdorf Rule
//=============================================================
type Pos = (Int, Int)
type Path = List[Pos]
// for measuring time
def time_needed[T](n: Int, code: => T) : T = {
val start = System.nanoTime()
for (i <- 0 until n) code
val result = code
val end = System.nanoTime()
println(f"Time needed: ${(end - start) / 1.0e9}%3.3f secs.")
result
}
def print_board(dim: Int, path: Path): Unit = {
println
for (i <- 0 until dim) {
for (j <- 0 until dim) {
print(f"${path.reverse.indexOf((i, j))}%4.0f ")
}
println
}
}
def add_pair(x: Pos, y: Pos): Pos =
(x._1 + y._1, x._2 + y._2)
def is_legal(dim: Int, path: Path, x: Pos): Boolean =
0 <= x._1 && 0 <= x._2 && x._1 < dim && x._2 < dim && !path.contains(x)
def moves(x: Pos): List[Pos] =
List(( 1, 2),( 2, 1),( 2, -1),( 1, -2),
(-1, -2),(-2, -1),(-2, 1),(-1, 2)).map(add_pair(x, _))
def legal_moves(dim: Int, path: Path, x: Pos): List[Pos] =
moves(x).filter(is_legal(dim, path, _))
def ordered_moves(dim: Int, path: Path, x: Pos): List[Pos] =
legal_moves(dim, path, x).sortBy((x) => legal_moves(dim, path, x).length)
import scala.annotation.tailrec
@tailrec
def first(xs: List[Pos], f: Pos => Option[Path]): Option[Path] = xs match {
case Nil => None
case x::xs => {
val result = f(x)
if (result.isDefined) result else first(xs, f)
}
}
//def first[A, B](xs: List[A], f: A => Option[B]): Option[B] =
// xs.flatMap(f(_)).headOption
def first_closed_tour_heuristics(dim: Int, path: Path): Option[Path] = {
if (path.length == dim * dim && moves(path.head).contains(path.last)) Some(path)
else
first(ordered_moves(dim, path, path.head), (x: Pos) => first_closed_tour_heuristics(dim, x::path))
}
// heuristic cannot be used to search for closed tours on 7 x 7
for (dim <- 1 to 6) {
val t = time_needed(0, first_closed_tour_heuristics(dim, List((dim / 2, dim / 2))))
println(s"${dim} x ${dim} closed: " + (if (t == None) "" else { print_board(dim, t.get) ; "" }))
}
//@tailrec
/*
def first_tour_heuristics(dim: Int, path: Path): Option[Path] = {
@tailrec
def aux(dim: Int, path: Path, moves: List[Pos]): Option[Path] =
if (path.length == dim * dim) Some(path)
else
moves match {
case Nil => None
case x::xs => {
val r = first_tour_heuristics(dim, x::path)
if (r.isDefined) r else aux(dim, path, xs)
}
}
aux(dim, path, ordered_moves(dim, path, path.head))
}
*/
@tailrec
def tour_on_mega_board(dim: Int, paths: List[Path]): Option[Path] = paths match {
case Nil => None
case (path::rest) =>
if (path.length == dim * dim) Some(path)
else tour_on_mega_board(dim, ordered_moves(dim, path, path.head).map(_::path) ::: rest)
}
/*
def first_tour_heuristics(dim: Int, path: Path): Option[Path] = {
if (path.length == dim * dim) Some(path)
else
for (p <- ordered_moves(dim, path, path.head))
val r = first_tour_heuristics(dim, x::path)
//first(ordered_moves(dim, path, path.head), (x: Pos) => first_tour_heuristics(dim, x::path))
ordered_moves(dim, path, path.head).view.flatMap((x: Pos) => first_tour_heuristics(dim, x::path)).headOption
}
*/
/*
for (dim <- 1 to 50) {
val t = first_tour_heuristics(dim, List((dim / 2, dim / 2)))
println(s"${dim} x ${dim}: " + (if (t == None) "" else { print_board(dim, t.get) ; "" }))
}
*/
val dim = 70
println(s"${dim} x ${dim}:")
print_board(dim, time_needed(0, tour_on_mega_board(dim, List(List((0, 0)))).get))