// Core Part about a "Compiler" for the Brainf*** language
//======================================================
object CW10b {
// !!! Copy any function you need from file bf.scala !!!
//
// If you need any auxiliary function, feel free to
// implement it, but do not make any changes to the
// templates below.
// DEBUGGING INFORMATION FOR COMPILERS!!!
//
// Compiler, even real ones, are fiendishly difficult to get
// to produce correct code. One way to debug them is to run
// example programs ``unoptimised''; and then optimised. Does
// the optimised version still produce the same result?
// for timing purposes
def time_needed[T](n: Int, code: => T) = {
val start = System.nanoTime()
for (i <- 0 until n) code
val end = System.nanoTime()
(end - start)/(n * 1.0e9)
}
type Mem = Map[Int, Int]
import io.Source
import scala.util._
// TASKS
//=======
// (5) Write a function jtable that precomputes the "jump
// table" for a bf-program. This function takes a bf-program
// as an argument and Returns a Map[Int, Int]. The
// purpose of this map is to record the information about
// pc positions where '[' or a ']' are stored. The information
// is to which pc-position do we need to jump next?
//
// For example for the program
//
// "+++++[->++++++++++<]>--<+++[->>++++++++++<<]>>++<<----------[+>.>.<+<]"
//
// we obtain the map
//
// Map(69 -> 61, 5 -> 20, 60 -> 70, 27 -> 44, 43 -> 28, 19 -> 6)
//
// This states that for the '[' on position 5, we need to
// jump to position 20, which is just after the corresponding ']'.
// Similarly, for the ']' on position 19, we need to jump to
// position 6, which is just after the '[' on position 5, and so
// on. The idea is to not calculate this information each time
// we hit a bracket, but just look up this information in the
// jtable. You can use the jumpLeft and jumpRight functions
// from Part 1 for calculating the jtable.
//
// Then adapt the compute and run functions from Part 1
// in order to take advantage of the information stored in the jtable.
// This means whenever jumpLeft and jumpRight was called previously,
// you should immediately look up the jump address in the jtable.
def jtable(pg: String) : Map[Int, Int] = ???
// testcase
//
// jtable("""+++++[->++++++++++<]>--<+++[->>++++++++++<<]>>++<<----------[+>.>.<+<]""")
// => Map(69 -> 61, 5 -> 20, 60 -> 70, 27 -> 44, 43 -> 28, 19 -> 6)
def compute2(pg: String, tb: Map[Int, Int], pc: Int, mp: Int, mem: Mem) : Mem = ???
def run2(pg: String, m: Mem = Map()) = ???
// testcases
// time_needed(1, run2(load_bff("benchmark.bf")))
// time_needed(1, run2(load_bff("sierpinski.bf")))
// (6) Write a function optimise which deletes "dead code" (everything
// that is not a bf-command) and also replaces substrings of the form
// [-] by a new command 0. The idea is that the loop [-] just resets the
// memory at the current location to 0. In the compute3 and run3 functions
// below you implement this command by writing the number 0 to mem(mp),
// that is write(mem, mp, 0).
//
// The easiest way to modify a string in this way is to use the regular
// expression """[^<>+-.,\[\]]""", which recognises everything that is
// not a bf-command and replace it by the empty string. Similarly the
// regular expression """\[-\]""" finds all occurrences of [-] and
// by using the Scala method .replaceAll you can replace it with the
// string "0" standing for the new bf-command.
def optimise(s: String) : String = ???
def compute3(pg: String, tb: Map[Int, Int], pc: Int, mp: Int, mem: Mem) : Mem = ???
def run3(pg: String, m: Mem = Map()) = ???
// testcases
//
// optimise(load_bff("benchmark.bf")) // should have inserted 0's
// optimise(load_bff("mandelbrot.bf")).length // => 11205
//
// time_needed(1, run3(load_bff("benchmark.bf")))
// (7) Write a function combine which replaces sequences
// of repeated increment and decrement commands by appropriate
// two-character commands. For example for sequences of +
//
// orig bf-cmds | replacement
// ------------------------------
// + | +A
// ++ | +B
// +++ | +C
// |
// ... |
// |
// +++....+++ | +Z
// (where length = 26)
//
// Similar for the bf-command -, > and <. All other commands should
// be unaffected by this change.
//
// Adapt the compute4 and run4 functions such that they can deal
// appropriately with such two-character commands.
def combine(s: String) : String = ???
// testcase
// combine(load_bff("benchmark.bf"))
def compute4(pg: String, tb: Map[Int, Int], pc: Int, mp: Int, mem: Mem) : Mem = ???
// should call first optimise and then combine on the input string
//
def run4(pg: String, m: Mem = Map()) = ???
// testcases
// combine(optimise(load_bff("benchmark.bf"))) // => """>A+B[<A+M>A-A]<A[[....."""
// testcases (they should now run much faster)
// time_needed(1, run4(load_bff("benchmark.bf")))
// time_needed(1, run4(load_bff("sierpinski.bf")))
// time_needed(1, run4(load_bff("mandelbrot.bf")))
}