// Part 2 and 3 about Movie Recommendations
// at Danube.co.uk
//===========================================
import io.Source
import scala.util._
object CW7b { // for purposes of generating a jar
// (1) Implement the function get_csv_url which takes an url-string
// as argument and requests the corresponding file. The two urls
// of interest are ratings_url and movies_url, which correspond
// to CSV-files.
// The function should ReTurn the CSV file appropriately broken
// up into lines, and the first line should be dropped (that is without
// the header of the CSV file). The result is a list of strings (lines
// in the file).
def get_csv_url(url: String) : List[String] = {
val csv = Source.fromURL(url)("ISO-8859-1")
csv.mkString.split("\n").toList.drop(1)
}
val ratings_url = """https://nms.kcl.ac.uk/christian.urban/ratings.csv"""
val movies_url = """https://nms.kcl.ac.uk/christian.urban/movies.csv"""
// test cases
//val ratings = get_csv_url(ratings_url)
//val movies = get_csv_url(movies_url)
//ratings.length // 87313
//movies.length // 9742
// (2) Implement two functions that process the CSV files. The ratings
// function filters out all ratings below 4 and ReTurns a list of
// (userID, movieID) pairs. The movies function just ReTurns a list
// of (movieId, title) pairs.
def process_ratings(lines: List[String]) : List[(String, String)] = {
for (cols <- lines.map(_.split(",").toList);
if (cols(2).toFloat >= 4)) yield (cols(0), cols(1))
}
def process_movies(lines: List[String]) : List[(String, String)] = {
for (cols <- lines.map(_.split(",").toList)) yield (cols(0), cols(1))
}
// test cases
//val good_ratings = process_ratings(ratings)
//val movie_names = process_movies(movies)
//good_ratings.length //48580
//movie_names.length // 9742
//==============================================
// Do not change anything below, unless you want
// to submit the file for the advanced part 3!
//==============================================
// (3) Implement a grouping function that calulates a map
// containing the userIds and all the corresponding recommendations
// (list of movieIds). This should be implemented in a tail
// recursive fashion, using a map m as accumulator. This map
// is set to Map() at the beginning of the claculation.
def groupById(ratings: List[(String, String)],
m: Map[String, List[String]]) : Map[String, List[String]] = ratings match {
case Nil => m
case (id, mov) :: rest => {
val old_ratings = m.getOrElse (id, Nil)
val new_ratings = m + (id -> (mov :: old_ratings))
groupById(rest, new_ratings)
}
}
// test cases
//val ratings_map = groupById(good_ratings, Map())
//val movies_map = movie_names.toMap
//ratings_map.get("414").get.map(movies_map.get(_)) // most prolific recommender with 1227 positive ratings
//ratings_map.get("474").get.map(movies_map.get(_)) // second-most prolific recommender with 787 positive ratings
//ratings_map.get("214").get.map(movies_map.get(_)) // least prolific recommender with only 1 positive rating
//(4) Implement a function that takes a ratings map and a movie_name as argument.
// The function calculates all suggestions containing
// the movie mov in its recommendations. It ReTurns a list of all these
// recommendations (each of them is a list and needs to have mov deleted,
// otherwise it might happen we recommend the same movie).
def favourites(m: Map[String, List[String]], mov: String) : List[List[String]] =
(for (id <- m.keys.toList;
if m(id).contains(mov)) yield m(id).filter(_ != mov))
// test cases
// movie ID "912" -> Casablanca (1942)
// "858" -> Godfather
// "260" -> Star Wars: Episode IV - A New Hope (1977)
//favourites(ratings_map, "912").length // => 80
// That means there are 80 users that recommend the movie with ID 912.
// Of these 80 users, 55 gave a good rating to movie 858 and
// 52 a good rating to movies 260, 318, 593.
// (5) Implement a suggestions function which takes a rating
// map and a movie_name as arguments. It calculates all the recommended
// movies sorted according to the most frequently suggested movie(s) first.
def suggestions(recs: Map[String, List[String]],
mov_name: String) : List[String] = {
val favs = favourites(recs, mov_name).flatten
val favs_counted = favs.groupBy(identity).view.mapValues(_.size).toList
val favs_sorted = favs_counted.sortBy(_._2).reverse
favs_sorted.map(_._1)
}
// test cases
//suggestions(ratings_map, "912")
//suggestions(ratings_map, "912").length
// => 4110 suggestions with List(858, 260, 318, 593, ...)
// being the most frequently suggested movies
// (6) Implement recommendations functions which generates at most
// *two* of the most frequently suggested movies. It Returns the
// actual movie names, not the movieIDs.
def recommendations(recs: Map[String, List[String]],
movs: Map[String, String],
mov_name: String) : List[String] =
suggestions(recs, mov_name).take(2).map(movs.get(_).get)
// testcases
// recommendations(ratings_map, movies_map, "912")
// => List(Godfather, Star Wars: Episode IV - A NewHope (1977))
//recommendations(ratings_map, movies_map, "260")
// => List(Star Wars: Episode V - The Empire Strikes Back (1980),
// Star Wars: Episode VI - Return of the Jedi (1983))
// recommendations(ratings_map, movies_map, "2")
// => List(Lion King, Jurassic Park (1993))
// recommendations(ratings_map, movies_map, "0")
// => Nil
// recommendations(ratings_map, movies_map, "1")
// => List(Shawshank Redemption, Forrest Gump (1994))
// recommendations(ratings_map, movies_map, "4")
// => Nil (there are three ratings fro this movie in ratings.csv but they are not positive)
// If you want to calculate the recomendations for all movies.
// Will take a few seconds calculation time.
//val all = for (name <- movie_names.map(_._1)) yield {
// recommendations(ratings_map, movies_map, name)
//}
// helper functions
//List().take(2)
//List(1).take(2)
//List(1,2).take(2)
//List(1,2,3).take(2)
}