// Part 1 about the 3n+1 conceture
//=================================
//(1) Complete the collatz function below. It should
// recursively calculate the number of steps needed
// until the collatz series reaches the number 1.
// If needed you can use an auxilary function that
// performs the recursion. The function should expect
// arguments in the range of 1 to 1 Million.
def collatz(n: Long): List[Long] =
if (n == 1) List(1) else
if (n % 2 == 0) (n::collatz(n / 2)) else
(n::collatz(3 * n + 1))
// an alternative that calculates the steps directly
def collatz1(n: Long): Int =
if (n == 1) 1 else
if (n % 2 == 0) (1 + collatz1(n / 2)) else
(1 + collatz1(3 * n + 1))
//(2) Complete the collatz bound function below. It should
// calculuate how many steps are needed for each number
// from 1 upto a bound and return the maximum number of
// steps and the corresponding number that needs that many
// steps. You should expect bounds in the range of 1
// upto 1 million.
def collatz_max(bnd: Int): (Int, Int) = {
val all = for (i <- (1 to bnd).toList) yield collatz(i).length
val max = all.max
(all.indexOf(max) + 1, max)
}
// some testing harness
val bnds = List(2, 10, 100, 1000, 10000, 100000, 77000, 90000, 1000000)
for (bnd <- bnds) {
val (max, steps) = collatz_max(bnd)
println(s"In the range of 1 - ${bnd} the number ${max} needs the maximum steps of ${steps}")
}
//val all = for (i <- (1 to 100000).toList) yield collatz1(i)
//println(all.sorted.reverse.take(10))