// Scala Lecture 5+ −
//=================+ −
+ −
+ −
+ −
// Laziness with style+ −
//=====================+ −
+ −
// The concept of lazy evaluation doesn’t really + −
// exist in non-functional languages, but it is + −
// pretty easy to grasp. Consider first + −
+ −
def square(x: Int) = x * x+ −
+ −
square(42 + 8)+ −
+ −
// this is called strict evaluation+ −
+ −
// say we have a pretty expensive operation+ −
def peop(n: BigInt): Boolean = peop(n + 1) + −
+ −
val a = "foo"+ −
val b = "bar"+ −
+ −
if (a == b || peop(0)) println("true") else println("false")+ −
+ −
// this is called lazy evaluation+ −
// you delay compuation until it is really + −
// needed; once calculated though, does not + −
// need to be re-calculated+ −
+ −
// a useful example is+ −
def time_needed[T](i: Int, code: => T) = {+ −
val start = System.nanoTime()+ −
for (j <- 1 to i) code+ −
val end = System.nanoTime()+ −
f"${(end - start) / (i * 1.0e9)}%.6f secs"+ −
}+ −
+ −
+ −
// streams (I do not care how many)+ −
// primes: 2, 3, 5, 7, 9, 11, 13 ....+ −
+ −
def generatePrimes (s: Stream[Int]): Stream[Int] =+ −
s.head #:: generatePrimes(s.tail.filter(_ % s.head != 0))+ −
+ −
val primes = generatePrimes(Stream.from(2))+ −
+ −
// the first 10 primes+ −
primes.take(10).par.toList+ −
+ −
time_needed(1, primes.filter(_ > 100).take(3000).toList)+ −
time_needed(1, primes.filter(_ > 100).take(1000).toList)+ −
+ −
// a stream of successive numbers+ −
+ −
Stream.from(2).print+ −
Stream.from(2).take(10).force+ −
Stream.from(2).take(10).print+ −
Stream.from(10).take(10).print+ −
+ −
Stream.from(2).take(10).force+ −
+ −
// iterative version of the Fibonacci numbers+ −
def fibIter(a: BigInt, b: BigInt): Stream[BigInt] =+ −
a #:: fibIter(b, a + b)+ −
+ −
+ −
fibIter(1, 1).take(10).force+ −
fibIter(8, 13).take(10).force+ −
+ −
fibIter(1, 1).drop(10000).take(1).print+ −
+ −
+ −
// good for testing+ −
+ −
+ −
// Regular expressions - the power of DSLs in Scala+ −
// and Laziness+ −
//==================================================+ −
+ −
abstract class Rexp+ −
case object ZERO extends Rexp // nothing+ −
case object ONE extends Rexp // the empty string+ −
case class CHAR(c: Char) extends Rexp // a character c+ −
case class ALT(r1: Rexp, r2: Rexp) extends Rexp // alternative r1 + r2+ −
case class SEQ(r1: Rexp, r2: Rexp) extends Rexp // sequence r1 . r2 + −
case class STAR(r: Rexp) extends Rexp // star r*+ −
+ −
+ −
// some convenience for typing in regular expressions+ −
import scala.language.implicitConversions + −
import scala.language.reflectiveCalls + −
+ −
def charlist2rexp(s: List[Char]): Rexp = s match {+ −
case Nil => ONE+ −
case c::Nil => CHAR(c)+ −
case c::s => SEQ(CHAR(c), charlist2rexp(s))+ −
}+ −
implicit def string2rexp(s: String): Rexp = + −
charlist2rexp(s.toList)+ −
+ −
+ −
implicit def RexpOps (r: Rexp) = new {+ −
def | (s: Rexp) = ALT(r, s)+ −
def % = STAR(r)+ −
def ~ (s: Rexp) = SEQ(r, s)+ −
}+ −
+ −
implicit def stringOps (s: String) = new {+ −
def | (r: Rexp) = ALT(s, r)+ −
def | (r: String) = ALT(s, r)+ −
def % = STAR(s)+ −
def ~ (r: Rexp) = SEQ(s, r)+ −
def ~ (r: String) = SEQ(s, r)+ −
}+ −
+ −
+ −
def depth(r: Rexp) : Int = r match {+ −
case ZERO => 0+ −
case ONE => 0+ −
case CHAR(_) => 0+ −
case ALT(r1, r2) => Math.max(depth(r1), depth(r2)) + 1+ −
case SEQ(r1, r2) => Math.max(depth(r1), depth(r2)) + 1 + −
case STAR(r1) => depth(r1) + 1+ −
}+ −
+ −
//example regular expressions+ −
val digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"+ −
val sign = "+" | "-" | ""+ −
val number = sign ~ digit ~ digit.% + −
+ −
// task: enumerate exhaustively regular expression+ −
// starting from small ones towards bigger ones.+ −
+ −
// 1st idea: enumerate them all in a Set+ −
// up to a level+ −
+ −
def enuml(l: Int, s: String) : Set[Rexp] = l match {+ −
case 0 => Set(ZERO, ONE) ++ s.map(CHAR).toSet+ −
case n => + −
val rs = enuml(n - 1, s)+ −
rs +++ −
(for (r1 <- rs; r2 <- rs) yield ALT(r1, r2)) +++ −
(for (r1 <- rs; r2 <- rs) yield SEQ(r1, r2)) +++ −
(for (r1 <- rs) yield STAR(r1))+ −
}+ −
+ −
enuml(1, "a")+ −
enuml(1, "a").size+ −
enuml(2, "a").size+ −
enuml(3, "a").size + −
enuml(4, "a").size // out of heap space+ −
+ −
+ −
def enum(rs: Stream[Rexp]) : Stream[Rexp] = + −
rs #::: enum( (for (r1 <- rs; r2 <- rs) yield ALT(r1, r2)) #:::+ −
(for (r1 <- rs; r2 <- rs) yield SEQ(r1, r2)) #:::+ −
(for (r1 <- rs) yield STAR(r1)) )+ −
+ −
+ −
enum(ZERO #:: ONE #:: "ab".toStream.map(CHAR)).take(200).force+ −
enum(ZERO #:: ONE #:: "ab".toStream.map(CHAR)).take(5000000)+ −
+ −
+ −
val is = + −
(enum(ZERO #:: ONE #:: "ab".toStream.map(CHAR))+ −
.dropWhile(depth(_) < 3)+ −
.take(10).foreach(println))+ −
+ −
+ −
+ −
// Parsing - The Solved Problem That Isn't+ −
//=========================================+ −
//+ −
// https://tratt.net/laurie/blog/entries/parsing_the_solved_problem_that_isnt.html+ −
//+ −
// Or, A topic of endless "fun"(?)+ −
+ −
+ −
// input type: String+ −
// output type: Int+ −
Integer.parseInt("123u456")+ −
+ −
/* Note, in the previous lectures I did not show the type consraint+ −
* I <% Seq[_] , which means that the input type I can be+ −
* treated, or seen, as a sequence. */+ −
+ −
abstract class Parser[I <% Seq[_], T] {+ −
def parse(ts: I): Set[(T, I)]+ −
+ −
def parse_all(ts: I) : Set[T] =+ −
for ((head, tail) <- parse(ts); + −
if (tail.isEmpty)) yield head+ −
}+ −
+ −
// the idea is that a parser can parse something+ −
// from the input and leaves something unparsed => pairs+ −
+ −
class AltParser[I <% Seq[_], T](+ −
p: => Parser[I, T], + −
q: => Parser[I, T]) extends Parser[I, T] {+ −
+ −
def parse(sb: I) = p.parse(sb) ++ q.parse(sb) + −
}+ −
+ −
+ −
class SeqParser[I <% Seq[_], T, S](+ −
p: => Parser[I, T], + −
q: => Parser[I, S]) extends Parser[I, (T, S)] {+ −
+ −
def parse(sb: I) = + −
for ((head1, tail1) <- p.parse(sb); + −
(head2, tail2) <- q.parse(tail1)) yield ((head1, head2), tail2)+ −
}+ −
+ −
+ −
class FunParser[I <% Seq[_], T, S](+ −
p: => Parser[I, T], + −
f: T => S) extends Parser[I, S] {+ −
+ −
def parse(sb: I) = + −
for ((head, tail) <- p.parse(sb)) yield (f(head), tail)+ −
}+ −
+ −
+ −
// atomic parsers + −
case class CharParser(c: Char) extends Parser[String, Char] {+ −
def parse(sb: String) = + −
if (sb != "" && sb.head == c) Set((c, sb.tail)) else Set()+ −
}+ −
+ −
import scala.util.matching.Regex+ −
case class RegexParser(reg: Regex) extends Parser[String, String] {+ −
def parse(sb: String) = reg.findPrefixMatchOf(sb) match {+ −
case None => Set()+ −
case Some(m) => Set((m.matched, m.after.toString)) + −
}+ −
}+ −
+ −
val NumParser = RegexParser("[0-9]+".r)+ −
def StringParser(s: String) = RegexParser(Regex.quote(s).r)+ −
+ −
NumParser.parse_all("12u345")+ −
println(NumParser.parse_all("12u45"))+ −
+ −
+ −
// convenience+ −
implicit def string2parser(s: String) = StringParser(s)+ −
implicit def char2parser(c: Char) = CharParser(c)+ −
+ −
implicit def ParserOps[I<% Seq[_], T](p: Parser[I, T]) = new {+ −
def | (q : => Parser[I, T]) = new AltParser[I, T](p, q)+ −
def ==>[S] (f: => T => S) = new FunParser[I, T, S](p, f)+ −
def ~[S] (q : => Parser[I, S]) = new SeqParser[I, T, S](p, q)+ −
}+ −
+ −
implicit def StringOps(s: String) = new {+ −
def | (q : => Parser[String, String]) = new AltParser[String, String](s, q)+ −
def | (r: String) = new AltParser[String, String](s, r)+ −
def ==>[S] (f: => String => S) = new FunParser[String, String, S](s, f)+ −
def ~[S] (q : => Parser[String, S]) = + −
new SeqParser[String, String, S](s, q)+ −
def ~ (r: String) = + −
new SeqParser[String, String, String](s, r)+ −
}+ −
+ −
+ −
val NumParserInt = NumParser ==> (s => 2 * s.toInt)+ −
+ −
NumParser.parse_all("12345")+ −
NumParserInt.parse_all("12345")+ −
NumParserInt.parse_all("12u45")+ −
+ −
+ −
// grammar for arithmetic expressions+ −
//+ −
// E ::= T + E | T - E | T+ −
// T ::= F * T | F+ −
// F ::= ( E ) | Number+ −
+ −
+ −
lazy val E: Parser[String, Int] = + −
(T ~ "+" ~ E) ==> { case ((x, y), z) => x + z } |+ −
(T ~ "-" ~ E) ==> { case ((x, y), z) => x - z } | T + −
lazy val T: Parser[String, Int] = + −
(F ~ "*" ~ T) ==> { case ((x, y), z) => x * z } | F+ −
lazy val F: Parser[String, Int] = + −
("(" ~ E ~ ")") ==> { case ((x, y), z) => y } | NumParserInt+ −
+ −
+ −
println(E.parse_all("4*2+3"))+ −
println(E.parse_all("4*(2+3)"))+ −
println(E.parse_all("(4)*((2+3))"))+ −
println(E.parse_all("4/2+3"))+ −
println(E.parse_all("(1+2)+3"))+ −
println(E.parse_all("1+2+3")) + −
+ −
+ −
+ −
+ −
+ −
// The End ... Almost Christmas+ −
//===============================+ −
+ −
// I hope you had fun!+ −
+ −
// A function should do one thing, and only one thing.+ −
+ −
// Make your variables immutable, unless there's a good + −
// reason not to.+ −
+ −
// I did it, but this is actually not a good reason:+ −
// generating new labels:+ −
+ −
var counter = -1+ −
+ −
def Fresh(x: String) = {+ −
counter += 1+ −
x ++ "_" ++ counter.toString()+ −
}+ −
+ −
Fresh("x")+ −
Fresh("x")+ −
+ −
+ −
+ −
// You can be productive on Day 1, but the language is deep.+ −
//+ −
// http://scalapuzzlers.com+ −
//+ −
// http://www.latkin.org/blog/2017/05/02/when-the-scala-compiler-doesnt-help/+ −
+ −
List(1, 2, 3).contains("your mom")+ −
+ −
// I like best about Scala that it lets me often write+ −
// concise, readable code. And it hooks up with the + −
// Isabelle theorem prover.+ −
+ −