progs/lecture1.scala
author Christian Urban <urbanc@in.tum.de>
Fri, 09 Nov 2018 01:08:43 +0000
changeset 200 01ee4b576eb2
parent 199 54befaf23648
child 202 f7bcb27d1940
permissions -rw-r--r--
updated

// Scala Lecture 1
//=================

// Value assignments
// (their names should be lower case)
//====================================

val x = 42
val y = 3 + 4
val z = x / y


// (you cannot reassign values: z = 9 will give an error)


// Hello World
//=============

// an example of a stand-alone Scala file
// (in the assignments you must submit a plain Scala script)

object Hello extends App { 
  println("hello world")
}

// can then be called with
//
// $> scalac hello-world.scala
// $> scala Hello
//
// $> java -cp /usr/local/src/scala/lib/scala-library.jar:. Hello



// Collections
//=============
List(1,2,3,1)
Set(1,2,3,1)

1 to 10
(1 to 10).toList

(1 until 10).toList

// an element in a list
val lst = List(1, 2, 3, 1)
lst(0)
lst(2)

// some alterative syntax for lists

1 :: 2 :: 3 :: Nil
List(1, 2, 3) ::: List(4, 5, 6)

// Equality is structural
//========================
val a = "Dave"
val b = "Dave"

if (a == b) println("equal") else println("unequal")

Set(1,2,3) == Set(3,1,2)
List(1,2,3) == List(3,1,2)


// this applies to "concrete" values;
// you cannot compare functions


// Printing/Strings
//==================

println("test")

val tst = "This is a " + "test\n" 
println(tst)

val lst = List(1,2,3,1)

println(lst.toString)
println(lst.mkString("\n"))

println(lst.mkString(", "))

// some methods take more than one argument
println(lst.mkString("[", ",", "]"))



// Conversion methods
//====================

List(1,2,3,1).toString
List(1,2,3,1).toSet
"hello".toList
1.toDouble


// useful list methods

List(1,2,3,4).length
List(1,2,3,4).reverse
List(1,2,3,4).max
List(1,2,3,4).min
List(1,2,3,4).sum
List(1,2,3,4).take(2).sum
List(1,2,3,4).drop(2).sum
List(1,2,3,4,3).indexOf(3)

"1,2,3,4,5".split(",").mkString("\n")
"1,2,3,4,5".split(",3,").mkString("\n")

"abcdefg".startsWith("abc")


// Types (slide)
//===============

/* Scala is a strongly typed language
 
 * some base types

    Int, Long, BigInt, Float, Double
    String, Char
    Boolean

 * some compound types 

    List[Int],
    Set[Double]
    Pairs: (Int, String)        
    List[(BigInt, String)]
    Option[Int]
*/



// Pairs/Tuples
//==============

val p = (1, "one")
p._1
p._2

val t = (4,1,2,3)
t._4


List(("one", 1), ("two", 2), ("three", 3))

// Function Definitions
//======================

def incr(x: Int) : Int = x + 1
def double(x: Int) : Int = x + x
def square(x: Int) : Int = x * x

square(6)


// The general scheme for a function: you have to give a type 
// to each argument and a return type of the function
//
//  def fname(arg1: ty1, arg2: ty2,..., argn: tyn): rty = {
//    body 
//  }


//
// BTW: no returns!!
// "last" line (expression) in a function determines the result
//

def silly(n: Int) : Int = {
  n * n
  n + n
}


// If-Conditionals
//=================

// - Scala does not have a then-keyword
// - both if-else branches need to be present

def fact(n: Int) : Int = 
  if (n == 0) 1 else n * fact(n - 1)


fact(5)
fact(150)

/* boolean operators
 
   ==     equals
   !      not
   && ||  and, or
*/


def fact2(n: BigInt) : BigInt = 
  if (n == 0) 1 else n * fact2(n - 1)

fact2(150)


def fib(n: Int) : Int =
  if (n == 0) 1 else
    if (n == 1) 1 else fib(n - 1) + fib(n - 2)


//gcd - Euclid's algorithm

def gcd(a: Int, b: Int) : Int =
  if (b == 0) a else gcd(b, a % b)

gcd(48, 18)


def power(x: Int, n: Int) : Int =
  if (n == 0) 1 else x * power(x, n - 1) 

power(5, 5)


// Option type
//=============

//in Java if something unusually happens, you return null
//
//in Scala you use Options instead
//   - if the value is present, you use Some(value)
//   - if no value is present, you use None


List(7,2,3,4,5,6).find(_ < 4)
List(5,6,7,8,9).find(_ < 4)



// error handling with Options (no exceptions)
//
//  Try(something).getOrElse(what_to_do_in_case_of_an_exception)
//
import scala.util._
import io.Source

val my_url = "https://nms.kcl.ac.uk/christian.urban/"

Source.fromURL(my_url).mkString

Try(Source.fromURL(my_url).mkString).getOrElse("")

Try(Some(Source.fromURL(my_url).mkString)).getOrElse(None)


// the same for files
Source.fromFile("test.txt").mkString

// function reading something from files...

def get_contents(name: String) : List[String] = 
  Source.fromFile(name).getLines.toList

get_contents("test.txt")

// slightly better - return Nil
def get_contents(name: String) : List[String] = 
  Try(Source.fromFile(name).getLines.toList).getOrElse(Nil)

get_contents("text.txt")

// much better - you record in the type that things can go wrong 
def get_contents(name: String) : Option[List[String]] = 
  Try(Some(Source.fromFile(name).getLines.toList)).getOrElse(None)

get_contents("text.txt")



// String Interpolations
//=======================

val n = 3
println("The square of " + n + " is " + square(n) + ".")

println(s"The square of ${n} is ${square(n)}.")


// helpful for debugging purposes
//
//         "The most effective debugging tool is still careful thought, 
//          coupled with judiciously placed print statements."
//                   — Brian W. Kernighan, in Unix for Beginners (1979)


def gcd_db(a: Int, b: Int) : Int = {
  println(s"Function called with ${a} and ${b}.")
  if (b == 0) a else gcd_db(b, a % b)
}

gcd_db(48, 18)


// Asserts/Testing
//=================

assert(gcd(48, 18) == 6)

assert(gcd(48, 18) == 5, "The gcd test failed")


// For-Comprehensions (not For-Loops)
//====================================

for (n <- (1 to 10).toList) yield square(n)

for (n <- (1 to 10).toList; 
     m <- (1 to 10).toList) yield m * n


val mult_table = 
  for (n <- (1 to 10).toList; 
       m <- (1 to 10).toList) yield m * n

mult_table.sliding(10,10).mkString("\n")

// the list/set/... can also be constructed in any 
// other way
for (n <- List(10,12,4,5,7,8,10)) yield n * n


// with if-predicates / filters

for (n <- (1 to 3).toList; 
     m <- (1 to 3).toList;
     if (n + m) % 2 == 0) yield (n, m)

for (n <- (1 to 3).toList; 
     m <- (1 to 3).toList;
     if ((n + m) % 2 == 0)) yield (n, m)

// with patterns

val lst = List((1, 4), (2, 3), (3, 2), (4, 1))

for ((m, n) <- lst) yield m + n 

for (p <- lst) yield p._1 + p._2 


// general pattern of for-yield

for (p <- ...) yield {
  // potentially complicated
  // calculation of a result
}

// Functions producing multiple outputs
//======================================

def get_ascii(c: Char) : (Char, Int) = (c, c.toInt)

get_ascii('a')


// .maxBy, sortBy with pairs
def get_length(s: String) : (String, Int) = (s, s.length) 

val lst = List("zero", "one", "two", "three", "four", "ten")
val strs = for (s <- lst) yield get_length(s)

strs.sortBy(_._2)
strs.sortBy(_._1)

strs.maxBy(_._2)
strs.maxBy(_._1)


// For without yield
//===================

// with only a side-effect (no list is produced),
// has no "yield"

for (n <- (1 to 10)) println(n)


// BTW: a roundabout way of printing out a list, say
val lst = ('a' to 'm').toList

for (i <- (0 until lst.length)) println(lst(i))

// Why not just? Why making your life so complicated?
for (c <- lst) println(c)

// Aside: concurrency 
// (ONLY WORKS OUT-OF-THE-BOX IN SCALA 2.11.8, not in SCALA 2.12)
// (would need to have this wrapped into a function, or
//  REPL called with scala -Yrepl-class-based)
for (n <- (1 to 10)) println(n)
for (n <- (1 to 10).par) println(n)


// for measuring time
def time_needed[T](n: Int, code: => T) = {
  val start = System.nanoTime()
  for (i <- (0 to n)) code
  val end = System.nanoTime()
  (end - start) / 1.0e9
}


val list = (1 to 1000000).toList
time_needed(10, for (n <- list) yield n + 42)
time_needed(10, for (n <- list.par) yield n + 42)



// Just for "Fun": Mutable vs Immutable
//=======================================
//
// - no vars, no ++i, no +=
// - no mutable data-structures (no Arrays, no ListBuffers)


// Q: Count how many elements are in the intersections of two sets?

def count_intersection(A: Set[Int], B: Set[Int]) : Int = {
  var count = 0
  for (x <- A; if (B contains x)) count += 1 
  count
}

val A = (1 to 1000).toSet
val B = (1 to 1000 by 4).toSet

count_intersection(A, B)

// but do not try to add .par to the for-loop above


//propper parallel version
def count_intersection2(A: Set[Int], B: Set[Int]) : Int = 
  A.par.count(x => B contains x)

count_intersection2(A, B)


//for measuring time
def time_needed[T](n: Int, code: => T) = {
  val start = System.nanoTime()
  for (i <- (0 to n)) code
  val end = System.nanoTime()
  (end - start) / 1.0e9
}

val A = (1 to 1000000).toSet
val B = (1 to 1000000 by 4).toSet

time_needed(10, count_intersection(A, B))
time_needed(10, count_intersection2(A, B))


// Further Information
//=====================

// The Scala homepage and general information is at
//
//  http://www.scala-lang.org
//	http://docs.scala-lang.org
//
//
// It should be fairly easy to install the Scala binary and
// run Scala on the commandline. People also use Scala with 
// Vim and Jedit. I currently settled on VS Code
//
//   https://code.visualstudio.com
//
// There are also plugins for Eclipse and IntelliJ - YMMV.
// Finally there are online editors specifically designed for 
// running Scala applications (but do not blame me if you lose 
// all what you typed in):
//
//   https://scalafiddle.io 
//   https://scastie.scala-lang.org
//
//
//
// Scala Library Docs
//====================
//
//  http://www.scala-lang.org/api/current/
//
// Scala Tutorials
//
//  http://docs.scala-lang.org/tutorials/
//
// There are also a massive number of Scala tutorials on youtube
// and there are tons of books and free material. Google is your 
// friend.