--- a/progs/knight2.scala Tue Nov 20 14:31:14 2018 +0000
+++ b/progs/knight2.scala Thu Nov 22 17:19:23 2018 +0000
@@ -1,21 +1,81 @@
// Part 2 about finding a single tour for a board
//================================================
-// copy any function you need from file knight1.scala
-
type Pos = (Int, Int) // a position on a chessboard
type Path = List[Pos] // a path...a list of positions
-//(2a) Implement a first-function that finds the first
-// element, say x, in the list xs where f is not None.
-// In that case return f(x), otherwise none.
+// for measuring time
+def time_needed[T](n: Int, code: => T) : T = {
+ val start = System.nanoTime()
+ for (i <- 0 until n) code
+ val result = code
+ val end = System.nanoTime()
+ println("Time needed: " + (end - start) / 1.0e9 + " secs.")
+ result
+}
+
-def first(xs: List[Pos], f: Pos => Option[Path]): Option[Path] = ...
+def print_board(dim: Int, path: Path): Unit = {
+ println
+ for (i <- 0 until dim) {
+ for (j <- 0 until dim) {
+ print(f"${path.reverse.indexOf((i, j))}%3.0f ")
+ }
+ println
+ }
+}
+
+def add_pair(x: Pos)(y: Pos): Pos =
+ (x._1 + y._1, x._2 + y._2)
+
+def is_legal(dim: Int, path: Path)(x: Pos): Boolean =
+ 0 <= x._1 && 0 <= x._2 && x._1 < dim && x._2 < dim && !path.contains(x)
+
+def moves(x: Pos): List[Pos] =
+ List(( 1, 2),( 2, 1),( 2, -1),( 1, -2),
+ (-1, -2),(-2, -1),(-2, 1),(-1, 2)).map(add_pair(x))
+
+def legal_moves(dim: Int, path: Path, x: Pos): List[Pos] =
+ moves(x).filter(is_legal(dim, path))
+
-//(2b) Implement a function that uses the first-function for
-// trying out onward moves, and searches recursively for an
-// *open* tour on a dim * dim-board.
+def first(xs: List[Pos], f: Pos => Option[Path]): Option[Path] = xs match {
+ case Nil => None
+ case x::xs => {
+ val result = f(x)
+ if (result.isDefined) result else first(xs, f)
+ }
+}
+
+first(List((1, 0),(2, 0),(3, 0),(4, 0)), (x => if (x._1 > 3) Some(List(x)) else None))
+first(List((1, 0),(2, 0),(3, 0)), (x => if (x._1 > 3) Some(List(x)) else None))
+
+
+
+def first_tour(dim: Int, path: Path): Option[Path] = {
+ if (path.length == dim * dim) Some(path)
+ else
+ first(legal_moves(dim, path, path.head), (x: Pos) => first_tour(dim, x::path))
+}
-def first_tour(dim: Int, path: Path): Option[Path] = ...
-
+/*
+for (dim <- 1 to 8) {
+ val t = first_tour(dim, List((0, 0)))
+ println(s"${dim} x ${dim} " + (if (t == None) "" else { print_board(dim, t.get) ; "" }))
+}
+*/
+
+// 15 secs for 8 x 8
+val ts1 = time_needed(0,first_tour(8, List((0, 0))).get)
+
+// no result for 4 x 4
+val ts2 = time_needed(0, first_tour(4, List((0, 0))))
+
+// 0.3 secs for 6 x 6
+val ts3 = time_needed(0, first_tour(6, List((0, 0))))
+
+// 15 secs for 8 x 8
+time_needed(0, print_board(8, first_tour(8, List((0, 0))).get))
+
+