--- a/pre_testing1/collatz.scala Tue Nov 17 00:34:55 2020 +0000
+++ b/pre_testing1/collatz.scala Wed Nov 18 01:54:39 2020 +0000
@@ -1,54 +1,59 @@
-object CW6a {
+// Basic Part about the 3n+1 conjecture
+//==================================
+
+// generate jar with
+// > scala -d collatz.jar collatz.scala
+
+object CW6a { // for purposes of generating a jar
-//(1) Complete the collatz function below. It should
-// recursively calculate the number of steps needed
-// until the collatz series reaches the number 1.
-// If needed, you can use an auxiliary function that
-// performs the recursion. The function should expect
-// arguments in the range of 1 to 1 Million.
+/*
+def collatz(n: Long): Long =
+ if (n == 1) 0 else
+ if (n % 2 == 0) 1 + collatz(n / 2) else
+ 1 + collatz(3 * n + 1)
+*/
-def collatz(n: Long) : Long =
- if ( n == 1) 1;
- else if (n % 2 == 0) 1 + collatz( n / 2);
- else 1 + collatz( n * 3 + 1);
+def aux(n: Long, acc: Long) : Long =
+ if (n == 1) acc else
+ if (n % 2 == 0) aux(n / 2, acc + 1) else
+ aux(3 * n + 1, acc + 1)
-//(2) Complete the collatz_max function below. It should
-// calculate how many steps are needed for each number
-// from 1 up to a bound and then calculate the maximum number of
-// steps and the corresponding number that needs that many
-// steps. Again, you should expect bounds in the range of 1
-// up to 1 Million. The first component of the pair is
-// the maximum number of steps and the second is the
-// corresponding number.
+def collatz(n: Long): Long = aux(n, 0)
+
+def collatz_max(bnd: Long): (Long, Long) = {
+ val all = for (i <- (1L to bnd)) yield (collatz(i), i)
+ all.maxBy(_._1)
+}
-def collatz_max(bnd: Long) : (Long, Long) =
- ((1.toLong to bnd).toList.map
- (n => collatz(n)).max ,
- (1.toLong to bnd).toList.map
- (n => collatz(n)).indexOf((1.toLong to bnd).toList.map
- (n => collatz(n)).max) + 1);
+//collatz_max(1000000)
+//collatz_max(10000000)
+//collatz_max(100000000)
+
+/* some test cases
+val bnds = List(10, 100, 1000, 10000, 100000, 1000000)
-//(3) Implement a function that calculates the last_odd
-// number in a collatz series. For this implement an
-// is_pow_of_two function which tests whether a number
-// is a power of two. The function is_hard calculates
-// whether 3n + 1 is a power of two. Again you can
-// assume the input ranges between 1 and 1 Million,
-// and also assume that the input of last_odd will not
-// be a power of 2.
-//idk
- def is_pow_of_two(n: Long) : Boolean =
- if ( n & ( n - 1) == 0) true;
- else false;
+for (bnd <- bnds) {
+ val (steps, max) = collatz_max(bnd)
+ println(s"In the range of 1 - ${bnd} the number ${max} needs the maximum steps of ${steps}")
+}
+
+*/
-def is_hard(n: Long) : Boolean =
- if ( (3*n + 1) & 3*n == 0) true;
- else false;
+def is_pow(n: Long) : Boolean = (n & (n - 1)) == 0
+
+def is_hard(n: Long) : Boolean = is_pow(3 * n + 1)
+
+def last_odd(n: Long) : Long =
+ if (is_hard(n)) n else
+ if (n % 2 == 0) last_odd(n / 2) else
+ last_odd(3 * n + 1)
-def last_odd(n: Long) : Long = ???
+//for (i <- 130 to 10000) println(s"$i: ${last_odd(i)}")
+//for (i <- 1 to 100) println(s"$i: ${collatz(i)}")
+
+}
-}