--- a/testing3/knight1.scala Tue Nov 26 01:22:36 2019 +0000
+++ b/testing3/knight1.scala Tue Dec 03 01:22:16 2019 +0000
@@ -1,13 +1,119 @@
-// Preliminary Part 1 finding and counting Knight's tours
-//========================================================
+// Preliminary Part about finding Knight's tours
+//===============================================
+
+
+object CW8a {
-object CW8a {
+// If you need any auxiliary function, feel free to
+// implement it, but do not make any changes to the
+// templates below. Also have a look whether the functions
+// at the end are of any help.
+
+
type Pos = (Int, Int) // a position on a chessboard
type Path = List[Pos] // a path...a list of positions
+//(1) Complete the function that tests whether the position x
+// is inside the board and not yet element in the path.
-// for measuring time in the JAR
+def is_legal(dim: Int, path: Path, x: Pos) : Boolean = {
+ if ((!(path.contains(x))) && (x._1 >= 0) && (x._2 >= 0) && (x._1 < dim) && (x._2 < dim))
+ true
+ else false
+}
+
+//(2) Complete the function that calculates for a position x
+// all legal onward moves that are not already in the path.
+// The moves should be ordered in a "clockwise" manner.
+
+
+def legal_moves(dim: Int, path: Path, x: Pos) : List[Pos] = {//List[Pos]
+ val changes = List((1,2),(2,1),(2,-1),(1,-2),(-1,-2),(-2,-1),(-2,1),(-1,2))
+ val returnList = (for ((y,z) <- changes) yield(
+ //println(y,z)-2,-1
+ if ((is_legal(dim,path,((x._1 + y) , (x._2 + z)))) == true)
+ Some(x._1 + y , x._2 + z)
+ else
+ None
+ ))
+ returnList.flatten
+}
+
+
+//some testcases
+//
+//assert(legal_moves(8, Nil, (2,2)) ==
+ //List((3,4), (4,3), (4,1), (3,0), (1,0), (0,1), (0,3), (1,4)))
+//assert(legal_moves(8, Nil, (7,7)) == List((6,5), (5,6)))
+//assert(legal_moves(8, List((4,1), (1,0)), (2,2)) ==
+// List((3,4), (4,3), (3,0), (0,1), (0,3), (1,4)))
+//assert(legal_moves(8, List((6,6)), (7,7)) == List((6,5), (5,6)))
+
+
+//(3) Complete the two recursive functions below.
+// They exhaustively search for knight's tours starting from the
+// given path. The first function counts all possible tours,
+// and the second collects all tours in a list of paths.
+
+def count_tours(dim: Int, path: Path) : Int = (dim,path) match {//Int
+ case (_, Nil) => 0
+ case (0, path) => 0
+ case (dim, path) => { if (legal_moves(dim,path, path.head).size == 0)
+ if(path.size < dim*dim)
+ 0
+ else
+ 1
+ else (for (j <- legal_moves(dim,path, path.head)) yield count_tours(dim,j::path)).sum
+ }
+}
+
+def enum_tours(dim: Int, path: Path) : List[Path] = (dim,path) match {
+ case (_, Nil) => Nil
+ case (0, path) => Nil
+ case (dim, path) => { if (legal_moves(dim,path, path.head).size == 0)
+ if(path.size < dim*dim)
+ Nil
+ else
+ List(path)
+ else (for (j <- legal_moves(dim,path, path.head)) yield enum_tours(dim,j::path)).flatten
+ }
+
+}
+
+
+//(4) Implement a first-function that finds the first
+// element, say x, in the list xs where f is not None.
+// In that case Return f(x), otherwise None. If possible,
+// calculate f(x) only once.
+
+//def first(xs: List[Pos], f: Pos => Option[Path]) : Option[Path] = ...
+
+
+// testcases
+//
+//def foo(x: (Int, Int)) = if (x._1 > 3) Some(List(x)) else None
+//
+//first(List((1, 0),(2, 0),(3, 0),(4, 0)), foo) // Some(List((4,0)))
+//first(List((1, 0),(2, 0),(3, 0)), foo) // None
+
+
+//(5) Implement a function that uses the first-function from (5) for
+// trying out onward moves, and searches recursively for a
+// knight tour on a dim * dim-board.
+
+
+//def first_tour(dim: Int, path: Path) : Option[Path] = ...
+
+
+
+
+
+
+/* Helper functions
+
+
+// for measuring time
def time_needed[T](code: => T) : T = {
val start = System.nanoTime()
val result = code
@@ -16,6 +122,14 @@
result
}
+// can be called for example with
+// time_needed(count_tours(dim, List((0, 0))))
+// in order to print out the time that is needed for
+// running count_tours
+
+
+
+
// for printing a board
def print_board(dim: Int, path: Path): Unit = {
println
@@ -27,144 +141,7 @@
}
}
-def is_legal(dim: Int, path: Path, x: Pos): Boolean =
- 0 <= x._1 && 0 <= x._2 && x._1 < dim && x._2 < dim && !path.contains(x)
-// testcases
-//assert(is_legal(8, Nil, (3, 4)) == true)
-//assert(is_legal(8, List((4, 1), (1, 0)), (4, 1)) == false)
-//assert(is_legal(2, Nil, (0, 0)) == true)
-
-
-def add_pair(x: Pos, y: Pos): Pos =
- (x._1 + y._1, x._2 + y._2)
-
-def moves(x: Pos): List[Pos] =
- List(( 1, 2),( 2, 1),( 2, -1),( 1, -2),
- (-1, -2),(-2, -1),(-2, 1),(-1, 2)).map(add_pair(x, _))
-
-// 1 mark
-
-def legal_moves(dim: Int, path: Path, x: Pos): List[Pos] =
- moves(x).filter(is_legal(dim, path, _))
-
-// testcases
-//assert(legal_moves(8, Nil, (2,2)) ==
-// List((3,4), (4,3), (4,1), (3,0), (1,0), (0,1), (0,3), (1,4)))
-//assert(legal_moves(8, Nil, (7,7)) == List((6,5), (5,6)))
-//assert(legal_moves(8, List((4,1), (1,0)), (2,2)) ==
-// List((3,4), (4,3), (3,0), (0,1), (0,3), (1,4)))
-//assert(legal_moves(8, List((6,6)), (7,7)) == List((6,5), (5,6)))
-//assert(legal_moves(1, Nil, (0,0)) == List())
-//assert(legal_moves(2, Nil, (0,0)) == List())
-//assert(legal_moves(3, Nil, (0,0)) == List((1,2), (2,1)))
-
-// 2 marks
-
-def tcount_tours(dim: Int, path: Path): Int = {
- if (path.length == dim * dim) 1
- else
- (for (x <- legal_moves(dim, path, path.head)) yield tcount_tours(dim, x::path)).sum
-}
-
-def count_tours(dim: Int, path: Path) =
- time_needed(tcount_tours(dim: Int, path: Path))
-
-
-def tenum_tours(dim: Int, path: Path): List[Path] = {
- if (path.length == dim * dim) List(path)
- else
- (for (x <- legal_moves(dim, path, path.head)) yield tenum_tours(dim, x::path)).flatten
-}
-
-def enum_tours(dim: Int, path: Path) =
- time_needed(tenum_tours(dim: Int, path: Path))
-
-// test cases
-
-/*
-def count_all_tours(dim: Int) = {
- for (i <- (0 until dim).toList;
- j <- (0 until dim).toList) yield count_tours(dim, List((i, j)))
-}
-
-def enum_all_tours(dim: Int): List[Path] = {
- (for (i <- (0 until dim).toList;
- j <- (0 until dim).toList) yield enum_tours(dim, List((i, j)))).flatten
-}
-
-
-println("Number of tours starting from (0, 0)")
-
-for (dim <- 1 to 5) {
- println(s"${dim} x ${dim} " + time_needed(0, count_tours(dim, List((0, 0)))))
-}
-
-println("Number of tours starting from all fields")
-
-for (dim <- 1 to 5) {
- println(s"${dim} x ${dim} " + time_needed(0, count_all_tours(dim)))
-}
-
-for (dim <- 1 to 5) {
- val ts = enum_tours(dim, List((0, 0)))
- println(s"${dim} x ${dim} ")
- if (ts != Nil) {
- print_board(dim, ts.head)
- println(ts.head)
- }
-}
*/
-// 1 mark
-
-def first(xs: List[Pos], f: Pos => Option[Path]): Option[Path] = xs match {
- case Nil => None
- case x::xs => {
- val result = f(x)
- if (result.isDefined) result else first(xs, f)
- }
}
-
-// test cases
-//def foo(x: (Int, Int)) = if (x._1 > 3) Some(List(x)) else None
-//
-//first(List((1, 0),(2, 0),(3, 0),(4, 0)), foo)
-//first(List((1, 0),(2, 0),(3, 0)), foo)
-
-
-// 1 mark
-
-def tfirst_tour(dim: Int, path: Path): Option[Path] = {
- if (path.length == dim * dim) Some(path)
- else
- first(legal_moves(dim, path, path.head), (x:Pos) => tfirst_tour(dim, x::path))
-}
-
-def first_tour(dim: Int, path: Path) =
- time_needed(tfirst_tour(dim: Int, path: Path))
-
-
-/*
-for (dim <- 1 to 8) {
- val t = first_tour(dim, List((0, 0)))
- println(s"${dim} x ${dim} " + (if (t == None) "" else { print_board(dim, t.get) ; "" }))
-}
-*/
-
-// 15 secs for 8 x 8
-//val ts1 = time_needed(0,first_tour(8, List((0, 0))).get)
-
-// no result for 4 x 4
-//val ts2 = time_needed(0, first_tour(4, List((0, 0))))
-
-// 0.3 secs for 6 x 6
-//val ts3 = time_needed(0, first_tour(6, List((0, 0))))
-
-// 15 secs for 8 x 8
-//time_needed(0, print_board(8, first_tour(8, List((0, 0))).get))
-
-
-}
-
-