testing2/danube.scala
changeset 326 e5453add7df6
parent 284 9a04eb6a2291
child 329 8a34b2ebc8cc
--- a/testing2/danube.scala	Tue Nov 26 01:22:36 2019 +0000
+++ b/testing2/danube.scala	Tue Dec 03 01:22:16 2019 +0000
@@ -2,114 +2,118 @@
 // at Danube.co.uk
 //===========================================
 
+object CW7b {
+
 import io.Source
 import scala.util._
 
-object CW7b { // for purposes of generating a jar
-
 // (1) Implement the function get_csv_url which takes an url-string
 //     as argument and requests the corresponding file. The two urls
 //     of interest are ratings_url and movies_url, which correspond 
 //     to CSV-files.
-//     The function should ReTurn the CSV file appropriately broken
+//
+//     The function should ReTurn the CSV-file appropriately broken
 //     up into lines, and the first line should be dropped (that is without
-//     the header of the CSV file). The result is a list of strings (lines
+//     the header of the CSV-file). The result is a list of strings (lines
 //     in the file).
 
 def get_csv_url(url: String) : List[String] = {
-  val csv = Source.fromURL(url)("ISO-8859-1")
-  csv.mkString.split("\n").toList.drop(1)
+    Try(Source.fromURL(url)("UTF-8").mkString.split("\n").toList.tail).getOrElse(List())
 }
 
+
 val ratings_url = """https://nms.kcl.ac.uk/christian.urban/ratings.csv"""
 val movies_url = """https://nms.kcl.ac.uk/christian.urban/movies.csv"""
 
-// test cases
-
-//val ratings = get_csv_url(ratings_url)
-//val movies = get_csv_url(movies_url)
+// testcases
+//-----------
+// val ratings = get_csv_url(ratings_url)
+// val movies = get_csv_url(movies_url)
 
 //ratings.length  // 87313
 //movies.length   // 9742
 
-// (2) Implement two functions that process the CSV files. The ratings
+
+
+// (2) Implement two functions that process the CSV-files from (1). The ratings
 //     function filters out all ratings below 4 and ReTurns a list of 
 //     (userID, movieID) pairs. The movies function just ReTurns a list 
-//     of (movieId, title) pairs.
+//     of (movieID, title) pairs.
 
 
 def process_ratings(lines: List[String]) : List[(String, String)] = {
-  for (cols <- lines.map(_.split(",").toList); 
-       if (cols(2).toFloat >= 4)) yield (cols(0), cols(1))  
+    val filteredLines = lines.filter(line => line.split(",")(2).toInt >= 4)
+    filteredLines.map(line => (line.split(",")(0), line.split(",")(1)))
 }
 
 def process_movies(lines: List[String]) : List[(String, String)] = {
-  for (cols <- lines.map(_.split(",").toList)) yield (cols(0), cols(1))  
+    lines.map(line => (line.split(",")(0), line.split(",")(1)))
 }
 
-// test cases
 
-//val good_ratings = process_ratings(ratings)
-//val movie_names = process_movies(movies)
+// testcases
+//-----------
+// val good_ratings = process_ratings(ratings)
+// val movie_names = process_movies(movies)
 
 //good_ratings.length   //48580
 //movie_names.length    // 9742
 
-//==============================================
-// Do not change anything below, unless you want 
-// to submit the file for the advanced part 3!
-//==============================================
-
-
-// (3) Implement a grouping function that calulates a map
-//     containing the userIds and all the corresponding recommendations 
-//     (list of movieIds). This  should be implemented in a tail
-//     recursive fashion, using a map m as accumulator. This map
-//     is set to Map() at the beginning of the claculation.
-
-def groupById(ratings: List[(String, String)], 
-              m: Map[String, List[String]]) : Map[String, List[String]] = ratings match {
-  case Nil => m
-  case (id, mov) :: rest => {
-    val old_ratings = m.getOrElse (id, Nil)
-    val new_ratings = m + (id -> (mov :: old_ratings))
-    groupById(rest, new_ratings)
-  }
-}
-
-//
-//val ls = List(("1", "a"), ("2", "a"), ("1", "c"), ("2", "a"), ("1", "c"))
-//
-//val m = groupById(ls, Map())
-//
-//m.getOrElse("1", Nil).count(_ == "c") // => 2
-//m.getOrElse("1", Nil).count(_ == "a") // => 1
-
-// test cases
-//val ratings_map = groupById(good_ratings, Map())
-//groupById(good_ratings, Map()).get("214")
-//groupById(good_ratings, Map()).toList.minBy(_._2.length)
-//val movies_map = movie_names.toMap
-
-//ratings_map.get("414").get.map(movies_map.get(_)) // most prolific recommender with 1227 positive ratings
-//ratings_map.get("474").get.map(movies_map.get(_)) // second-most prolific recommender with 787 positive ratings
-//ratings_map.get("214").get.map(movies_map.get(_)) // least prolific recommender with only 1 positive rating
 
 
 
-//(4) Implement a function that takes a ratings map and a movie_name as argument.
-// The function calculates all suggestions containing
-// the movie mov in its recommendations. It ReTurns a list of all these
-// recommendations (each of them is a list and needs to have mov deleted, 
-// otherwise it might happen we recommend the same movie).
+// (3) Implement a grouping function that calculates a Map
+//     containing the userIDs and all the corresponding recommendations 
+//     (list of movieIDs). This  should be implemented in a tail
+//     recursive fashion, using a Map m as accumulator. This Map m
+//     is set to Map() at the beginning of the calculation.
 
-def favourites(m: Map[String, List[String]], mov: String) : List[List[String]] = 
-  (for (id <- m.keys.toList;
-        if m(id).contains(mov)) yield m(id).filter(_ != mov))
+def groupById(ratings: List[(String, String)], 
+              m: Map[String, List[String]]) : Map[String, List[String]] = {
+    if (ratings.length == 0) m
+    else {
+        val firstUser = ratings(0)._1
+        val userRatings = ratings.filter(r => r._1 == firstUser)
+        val movieIds = userRatings.map(r => r._2)
+        val newMap = m + (firstUser -> movieIds)
+        groupById(ratings.filter(r => r._1 != firstUser), newMap)
+    }
+}
+
+
+// testcases
+//-----------
+//val ratings_map = groupById(good_ratings, Map())
+//val movies_map = movie_names.toMap
+
+//ratings_map.get("414").get.map(movies_map.get(_)) 
+//    => most prolific recommender with 1227 positive ratings
+
+//ratings_map.get("474").get.map(movies_map.get(_)) 
+//    => second-most prolific recommender with 787 positive ratings
+
+//ratings_map.get("214").get.map(movies_map.get(_)) 
+//    => least prolific recommender with only 1 positive rating
 
 
 
-// test cases
+// (4) Implement a function that takes a ratings map and a movie_name as argument.
+//     The function calculates all suggestions containing
+//     the movie in its recommendations. It ReTurns a list of all these
+//     recommendations (each of them is a list and needs to have the movie deleted, 
+//     otherwise it might happen we recommend the same movie).
+
+
+def favourites(m: Map[String, List[String]], mov: String) : List[List[String]] = {
+    val movieLists = m.map(r => r._2).toList.filter(_.contains(mov))
+    for (movieList <- movieLists) yield {
+        movieList.filter(_!=mov)
+    }
+}
+
+
+// testcases
+//-----------
 // movie ID "912" -> Casablanca (1942)
 //          "858" -> Godfather
 //          "260" -> Star Wars: Episode IV - A New Hope (1977)
@@ -121,45 +125,53 @@
 // 52 a good rating to movies 260, 318, 593.
 
 
-// (5) Implement a suggestions function which takes a rating
-// map and a movie_name as arguments. It calculates all the recommended
-// movies sorted according to the most frequently suggested movie(s) first.
 
-// needed in Scala 2.13.
- 
-def mapValues[S, T, R](m: Map[S, T], f: T => R) =
-  m.map { case (x, y) => (x, f(y)) }
+// (5) Implement a suggestions function which takes a rating
+//     map and a movie_name as arguments. It calculates all the recommended
+//     movies sorted according to the most frequently suggested movie(s) first.
+
 
 def suggestions(recs: Map[String, List[String]], 
-                    mov_name: String) : List[String] = {
-  val favs = favourites(recs, mov_name).flatten
-  val favs_counted = mapValues(favs.groupBy(identity), (v:List[String]) => v.size).toList
-  val favs_sorted = favs_counted.sortBy(_._2).reverse
-  favs_sorted.map(_._1)
+                mov_name: String) : List[String] = {
+    val favs = favourites(recs, mov_name).flatten
+    favs.map(x => (x, favs.count(_==x)))
+        .sortBy(_._1)
+        .reverse
+        .sortBy(_._2)
+        .reverse
+        .distinct
+        .map(_._1)
 }
 
-// check
-// groupMap is equivalent to groupBy(key).mapValues(_.map(f))
 
-// test cases
+// testcases
+//-----------
 
 //suggestions(ratings_map, "912")
 //suggestions(ratings_map, "912").length  
 // => 4110 suggestions with List(858, 260, 318, 593, ...)
 //    being the most frequently suggested movies
 
-// (6) Implement recommendations functions which generates at most
-// *two* of the most frequently suggested movies. It Returns the 
-// actual movie names, not the movieIDs.
+
+
+// (6) Implement a recommendations function which generates at most
+//     *two* of the most frequently suggested movies. It ReTurns the 
+//     actual movie names, not the movieIDs.
+
 
 def recommendations(recs: Map[String, List[String]],
-                   movs: Map[String, String],
-                   mov_name: String) : List[String] =
-  suggestions(recs, mov_name).take(2).map(movs.get(_).get)                 
+                    movs: Map[String, String],
+                    mov_name: String) : List[String] = {
+    val sug = suggestions(recs, mov_name)
+    val toptwo = sug.take(2)
+    if (toptwo.length == 0) Nil
+    else toptwo.map(movs(_))
+}
+
 
 
 // testcases
-
+//-----------
 // recommendations(ratings_map, movies_map, "912")
 //   => List(Godfather, Star Wars: Episode IV - A NewHope (1977))
 
@@ -177,11 +189,11 @@
 //   => List(Shawshank Redemption, Forrest Gump (1994))
 
 // recommendations(ratings_map, movies_map, "4")
-//   => Nil  (there are three ratings fro this movie in ratings.csv but they are not positive)     
+//   => Nil  (there are three ratings for this movie in ratings.csv but they are not positive)     
 
 
-// If you want to calculate the recomendations for all movies.
-// Will take a few seconds calculation time.
+// If you want to calculate the recommendations for all movies,
+// then use this code (it will take a few seconds calculation time).
 
 //val all = for (name <- movie_names.map(_._1)) yield {
 //  recommendations(ratings_map, movies_map, name)
@@ -193,4 +205,32 @@
 //List(1,2).take(2)
 //List(1,2,3).take(2)
 
+
+
 }
+
+// val ratings_url = """https://nms.kcl.ac.uk/christian.urban/ratings.csv"""
+// val movies_url = """https://nms.kcl.ac.uk/christian.urban/movies.csv"""
+
+// val ratings = CW7b.get_csv_url(ratings_url)
+// val movies = CW7b.get_csv_url(movies_url)
+
+// println(movies.length)
+// val good_ratings = CW7b.process_ratings(ratings)
+// val movie_names = CW7b.process_movies(movies)
+
+// val ratings_map = CW7b.groupById(good_ratings, Map())
+// val movies_map = movie_names.toMap
+
+
+
+//println(CW7b.recommendations(ratings_map, movies_map, "912"))
+/*
+val ratings_url = """https://nms.kcl.ac.uk/christian.urban/ratings.csv"""
+
+val ratings = CW7b.get_csv_url(ratings_url)
+
+val good_ratings = CW7b.process_ratings(ratings)
+val ratings_map = CW7b.groupById(good_ratings, Map())
+
+println(CW7b.suggestions(ratings_map, "912").length)*/