--- a/testing2/docdiff.scala Tue Nov 12 10:47:27 2019 +0000
+++ b/testing2/docdiff.scala Tue Nov 19 00:40:27 2019 +0000
@@ -2,7 +2,8 @@
//========================================
-object CW7a { // for purposes of generating a jar
+object CW7a {
+
//(1) Complete the clean function below. It should find
// all words in a string using the regular expression
@@ -12,16 +13,39 @@
//
// The words should be Returned as a list of strings.
-def clean(s: String) : List[String] =
- ("""\w+""".r).findAllIn(s).toList
+
+def clean(s: String) : List[String] = {
+ val regex = """\w+""".r;
+ val list_of_words = s.split(" ").toList
+ for(word <- list_of_words;
+ actual_word <- divide_string_where_different(word, regex.findAllIn(word).mkString, 0)) yield actual_word
+}
+/*
+ A secondary function that takes as parameters @param original which is the original word, @param returned which is thea word after the process of removing
+ some characters not allowed by a regular expression, and @param i which is the index where to start compare the characters of the two words.
+ It @return a List of strings which represents all the substrings of returned which were previously divided by characters not allowed by the regular expression applied on it.
+*/
+def divide_string_where_different(original: String, returned: String, i : Int): List[String] ={
+ val max_i = original.length -1
+ if(original(i) != returned(i)) returned.substring(0, i)::divide_string_where_different(original.substring(i+1), returned.substring(i), 0).filter(_.nonEmpty)
+ else if (i == max_i) List(returned)
+ else divide_string_where_different(original,returned, i +1)
+
+}
//(2) The function occurrences calculates the number of times
// strings occur in a list of strings. These occurrences should
// be calculated as a Map from strings to integers.
-def occurrences(xs: List[String]): Map[String, Int] =
- (for (x <- xs.distinct) yield (x, xs.count(_ == x))).toMap
+
+def occurrences(xs: List[String]): Map[String, Int] = {
+ val lst = xs.distinct
+ val word_pairs = (for (word <- lst) yield (word, xs.count(_==word))).toList
+ word_pairs.toMap
+}
+
+
//(3) This functions calculates the dot-product of two documents
// (list of strings). For this it calculates the occurrence
@@ -29,29 +53,33 @@
// If a string does not occur in a document, the product is zero.
// The function finally sums up all products.
+
def prod(lst1: List[String], lst2: List[String]) : Int = {
- val words = (lst1 ::: lst2).distinct
- val occs1 = occurrences(lst1)
- val occs2 = occurrences(lst2)
- words.map{ w => occs1.getOrElse(w, 0) * occs2.getOrElse(w, 0) }.sum
+ val map1 = occurrences(lst1)
+ val map2 = occurrences(lst2)
+ print(s"map1 is $map1 \n and map2 is $map2")
+ val pairs = (for(pair1 <- map1 if(map2.get(pair1._1) != None)) yield (pair1._2, map2.get(pair1._1).get)).toList
+ print(s"\n pairs are $pairs")
+ val products = (for(pair <- pairs) yield pair._1 * pair._2).toList
+ products.sum
+
}
+
//(4) Complete the functions overlap and similarity. The overlap of
// two documents is calculated by the formula given in the assignment
// description. The similarity of two strings is given by the overlap
-// of the cleaned (see (1)) strings.
-
-def overlap(lst1: List[String], lst2: List[String]) : Double = {
- val m1 = prod(lst1, lst1)
- val m2 = prod(lst2, lst2)
- prod(lst1, lst2).toDouble / (List(m1, m2).max)
-}
-
-def similarity(s1: String, s2: String) : Double =
- overlap(clean(s1), clean(s2))
+// of the cleaned strings (see (1)).
-/*
+//def overlap(lst1: List[String], lst2: List[String]) : Double = ...
+
+//def similarity(s1: String, s2: String) : Double = ...
+
+
+
+
+/* Test cases
val list1 = List("a", "b", "b", "c", "d")
@@ -61,6 +89,8 @@
occurrences(List("d", "b", "d", "b", "d")) // Map(d -> 3, b -> 2)
prod(list1,list2) // 7
+prod(list1,list1)
+prod(list2,list2)
overlap(list1, list2) // 0.5384615384615384
overlap(list2, list1) // 0.5384615384615384
@@ -81,7 +111,7 @@
heritage which ensures Australia's capacity to attract international
ecotourists."""
-similarity(orig1, plag1)
+similarity(orig1, plag1) // 0.8679245283018868
// Plagiarism examples from
@@ -105,13 +135,15 @@
recovery: a controversial tactic that is often implemented immediately
following an oil spill."""
-overlap(clean(orig2), clean(plag2))
-similarity(orig2, plag2)
+overlap(clean(orig2), clean(plag2)) // 0.728
+similarity(orig2, plag2) // 0.728
+
+
// The punchline: everything above 0.6 looks suspicious and
-// should be looked at by staff.
+// should be investigated by staff.
*/
+}
-}