--- a/main_solution4/knight2.scala Sat Nov 04 18:53:37 2023 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,93 +0,0 @@
-// Part 2 about finding a single tour using the Warnsdorf Rule
-//=============================================================
-
-object M4b { // for preparing the jar
-
-type Pos = (Int, Int)
-type Path = List[Pos]
-
-
-// for measuring time in the JAR
-def time_needed[T](code: => T) : T = {
- val start = System.nanoTime()
- val result = code
- val end = System.nanoTime()
- println(f"Time needed: ${(end - start) / 1.0e9}%3.3f secs.")
- result
-}
-
-
-def print_board(dim: Int, path: Path): Unit = {
- println()
- for (i <- 0 until dim) {
- for (j <- 0 until dim) {
- print(f"${path.reverse.indexOf((i, j))}%4.0f ")
- }
- println()
- }
-}
-
-def add_pair(x: Pos, y: Pos): Pos =
- (x._1 + y._1, x._2 + y._2)
-
-def is_legal(dim: Int, path: Path, x: Pos): Boolean =
- 0 <= x._1 && 0 <= x._2 && x._1 < dim && x._2 < dim && !path.contains(x)
-
-def moves(x: Pos): List[Pos] =
- List(( 1, 2),( 2, 1),( 2, -1),( 1, -2),
- (-1, -2),(-2, -1),(-2, 1),(-1, 2)).map(add_pair(x, _))
-
-def legal_moves(dim: Int, path: Path, x: Pos): List[Pos] =
- moves(x).filter(is_legal(dim, path, _))
-
-def ordered_moves(dim: Int, path: Path, x: Pos): List[Pos] =
- legal_moves(dim, path, x).sortBy((x) => legal_moves(dim, path, x).length)
-
-import scala.annotation.tailrec
-
-@tailrec
-def first(xs: List[Pos], f: Pos => Option[Path]): Option[Path] = xs match {
- case Nil => None
- case x::xs => {
- val result = f(x)
- if (result.isDefined) result else first(xs, f)
- }
-}
-
-
-def tfirst_closed_tour_heuristics(dim: Int, path: Path): Option[Path] = {
- if (path.length == dim * dim && moves(path.head).contains(path.last)) Some(path)
- else
- first(ordered_moves(dim, path, path.head), (x: Pos) => tfirst_closed_tour_heuristics(dim, x::path))
-}
-
-def first_closed_tour_heuristics(dim: Int, path: Path) =
- time_needed(tfirst_closed_tour_heuristics(dim: Int, path: Path))
-
-def first_closed_tour_heuristic(dim: Int, path: Path) =
- time_needed(tfirst_closed_tour_heuristics(dim: Int, path: Path))
-
-// heuristic cannot be used to search for closed tours on 7 x 7 an beyond
-//for (dim <- 1 to 6) {
-// val t = time_needed(0, first_closed_tour_heuristics(dim, List((dim / 2, dim / 2))))
-// println(s"${dim} x ${dim} closed: " + (if (t == None) "" else { print_board(dim, t.get) ; "" }))
-//}
-
-
-def tfirst_tour_heuristics(dim: Int, path: Path): Option[Path] = {
- if (path.length == dim * dim) Some(path)
- else
- first(ordered_moves(dim, path, path.head), (x: Pos) => tfirst_tour_heuristics(dim, x::path))
-}
-
-
-def first_tour_heuristics(dim: Int, path: Path) =
- time_needed(tfirst_tour_heuristics(dim: Int, path: Path))
-
-def first_tour_heuristic(dim: Int, path: Path) =
- time_needed(tfirst_tour_heuristics(dim: Int, path: Path))
-
-// will be called with boards up to 30 x 30
-
-
-}