--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/progs/k1_sol.scala Mon Nov 14 03:25:14 2016 +0000
@@ -0,0 +1,132 @@
+// Part 1 about finding anod counting Knight's tours
+//===================================================
+
+
+
+type Pos = (Int, Int)
+type Path = List[Pos]
+
+def print_board(dim: Int, path: Path): Unit = {
+ println
+ for (i <- 0 until dim) {
+ for (j <- 0 until dim) {
+ print(f"${path.reverse.indexOf((i, j))}%3.0f ")
+ }
+ println
+ }
+}
+
+def add_pair(x: Pos)(y: Pos): Pos =
+ (x._1 + y._1, x._2 + y._2)
+
+def dist(dim: Int, y: Pos) =
+ (dim / 2 - y._1).abs + (dim / 2 - y._2).abs
+
+def is_legal(dim: Int, path: Path)(x: Pos): Boolean =
+ 0 <= x._1 && 0 <= x._2 && x._1 < dim && x._2 < dim && !path.contains(x)
+
+def moves(x: Pos): List[Pos] =
+ List(( 1, 2),( 2, 1),( 2, -1),( 1, -2),
+ (-1, -2),(-2, -1),(-2, 1),(-1, 2)).map(add_pair(x))
+
+def legal_moves(dim: Int, path: Path, x: Pos): List[Pos] =
+ moves(x).filter(is_legal(dim, path))
+
+
+def ordered_moves(dim: Int, path: Path, x: Pos): List[Pos] =
+ legal_moves(dim, path, x).sortBy((x) => (legal_moves(dim, path, x).length, dist(dim, x)))
+
+
+//moves(8)(1,3)
+//ordered_moves(8)(Nil)(1,3)
+//ordered_moves(8)(List((2, 4), (2, 6)))(1,3)
+
+
+
+def count_tours(dim: Int, path: Path): Int = {
+ if (path.length == dim * dim) 1
+ else
+ (for (x <- legal_moves(dim, path, path.head)) yield count_tours(dim, x::path)).sum
+}
+
+def enum_tours(dim: Int, path: Path): List[Path] = {
+ if (path.length == dim * dim) List(path)
+ else
+ (for (x <- legal_moves(dim, path, path.head)) yield enum_tours(dim, x::path)).flatten
+}
+
+def count_all_tours(dim: Int): Int = {
+ (for (i <- (0 until dim).toList;
+ j <- (0 until dim).toList) yield count_tours(dim, List((i, j)))).sum
+}
+
+def enum_all_tours(dim: Int): List[Path] = {
+ (for (i <- (0 until dim).toList;
+ j <- (0 until dim).toList) yield enum_tours(dim, List((i, j)))).flatten
+}
+
+/*
+for (dim <- 1 to 5) {
+ println(s"${dim} x ${dim} " + count_all_tours(dim))
+}
+
+for (dim <- 1 to 5) {
+ val ts = enum_all_tours(dim)
+ println(s"${dim} x ${dim} " + (if (ts == Nil) "" else { print_board(dim, ts.head) ; "" }))
+}
+*/
+
+
+def first(xs: List[Pos], f: Pos => Option[Path]): Option[Path] = xs match {
+ case Nil => None
+ case x::xs => {
+ val result = f(x)
+ if (result.isDefined) result else first(xs, f)
+ }
+}
+
+
+
+def first_tour(dim: Int, path: Path): Option[Path] = {
+ if (path.length == dim * dim) Some(path)
+ else
+ first(legal_moves(dim, path, path.head), (x: Pos) => first_tour(dim, x::path))
+}
+
+for (dim <- 1 to 8) {
+ val t = first_tour(dim, List((0, 0)))
+ println(s"${dim} x ${dim} " + (if (t == None) "" else { print_board(dim, t.get) ; "" }))
+}
+
+
+/*
+def first2[A, B](xs: List[A], f: A => Option[B]): Option[B] =
+ xs.par.flatMap(f(_)).headOption
+*/
+
+def first_closed_tour_heuristics(dim: Int, path: Path): Option[Path] = {
+ if (path.length == dim * dim && moves(path.head).contains(path.last)) Some(path)
+ else
+ first(ordered_moves(dim, path, path.head), (x: Pos) => first_closed_tour_heuristics(dim, x::path))
+}
+
+
+for (dim <- 1 to 6) {
+ val t = first_closed_tour_heuristics(dim, List((dim / 2, dim / 2)))
+ println(s"${dim} x ${dim} closed: " + (if (t == None) "" else { print_board(dim, t.get) ; "" }))
+}
+
+
+def first_tour_heuristics(dim: Int, path: Path): Option[Path] = {
+ if (path.length == dim * dim) Some(path)
+ else
+ first(ordered_moves(dim, path, path.head), (x: Pos) => first_tour_heuristics(dim, x::path))
+}
+
+/*
+for (dim <- 1 to 50) {
+ val t = first_tour_heuristics(dim, List((dim / 2, dim / 2)))
+ println(s"${dim} x ${dim}: " + (if (t == None) "" else { print_board(dim, t.get) ; "" }))
+}
+*/
+