--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/pre_testing3/postfix.scala Sun Nov 01 01:21:31 2020 +0000
@@ -0,0 +1,103 @@
+// Shunting Yard Algorithm
+// by Edsger Dijkstra
+// ========================
+
+object CW8a {
+
+type Toks = List[String]
+
+// the operations in the simple version
+val ops = List("+", "-", "*", "/")
+
+// the precedences of the operators
+val precs = Map("+" -> 1,
+ "-" -> 1,
+ "*" -> 2,
+ "/" -> 2)
+
+// helper function for splitting strings into tokens
+def split(s: String) : Toks = s.split(" ").toList
+
+// (6) Implement below the shunting yard algorithm. The most
+// convenient way to this in Scala is to implement a recursive
+// function and to heavily use pattern matching. The function syard
+// takes some input tokens as first argument. The second and third
+// arguments represent the stack and the output of the shunting yard
+// algorithm.
+//
+// In the marking, you can assume the function is called only with
+// an empty stack and an empty output list. You can also assume the
+// input os only properly formatted (infix) arithmetic expressions
+// (all parentheses will be well-nested, the input only contains
+// operators and numbers).
+
+// You can implement any additional helper function you need. I found
+// it helpful to implement two auxiliary functions for the pattern matching:
+//
+
+def is_op(op: String) : Boolean = ops.contains(op)
+
+def prec(op1: String, op2: String) : Boolean = precs(op1) <= precs(op2)
+
+
+def syard(toks: Toks, st: Toks = Nil, out: Toks = Nil) : Toks = (toks, st, out) match {
+ case (Nil, _, _) => out.reverse ::: st
+ case (num::in, st, out) if (num.forall(_.isDigit)) =>
+ syard(in, st, num :: out)
+ case (op1::in, op2::st, out) if (is_op(op1) && is_op(op2) && prec(op1, op2)) =>
+ syard(op1::in, st, op2 :: out)
+ case (op1::in, st, out) if (is_op(op1)) => syard(in, op1::st, out)
+ case ("("::in, st, out) => syard(in, "("::st, out)
+ case (")"::in, op2::st, out) =>
+ if (op2 == "(") syard(in, st, out) else syard(")"::in, st, op2 :: out)
+ case (in, st, out) => {
+ println(s"in: ${in} st: ${st} out: ${out.reverse}")
+ Nil
+ }
+}
+
+
+// test cases
+//syard(split("3 + 4 * ( 2 - 1 )")) // 3 4 2 1 - * +
+//syard(split("10 + 12 * 33")) // 10 12 33 * +
+//syard(split("( 5 + 7 ) * 2")) // 5 7 + 2 *
+//syard(split("5 + 7 / 2")) // 5 7 2 / +
+//syard(split("5 * 7 / 2")) // 5 7 * 2 /
+//syard(split("9 + 24 / ( 7 - 3 )")) // 9 24 7 3 - / +
+
+//syard(split("3 + 4 + 5")) // 3 4 + 5 +
+//syard(split("( ( 3 + 4 ) + 5 )")) // 3 4 + 5 +
+//syard(split("( 3 + ( 4 + 5 ) )")) // 3 4 5 + +
+//syard(split("( ( ( 3 ) ) + ( ( 4 + ( 5 ) ) ) )")) // 3 4 5 + +
+
+// (7) Implement a compute function that evaluates an input list
+// in postfix notation. This function takes a list of tokens
+// and a stack as argumenta. The function should produce the
+// result as an integer using the stack. You can assume
+// this function will be only called with proper postfix
+// expressions.
+
+def op_comp(s: String, n1: Int, n2: Int) = s match {
+ case "+" => n2 + n1
+ case "-" => n2 - n1
+ case "*" => n2 * n1
+ case "/" => n2 / n1
+}
+
+def compute(toks: Toks, st: List[Int] = Nil) : Int = (toks, st) match {
+ case (Nil, st) => st.head
+ case (op::in, n1::n2::st) if (is_op(op)) => compute(in, op_comp(op, n1, n2)::st)
+ case (num::in, st) => compute(in, num.toInt::st)
+}
+
+// test cases
+// compute(syard(split("3 + 4 * ( 2 - 1 )"))) // 7
+// compute(syard(split("10 + 12 * 33"))) // 406
+// compute(syard(split("( 5 + 7 ) * 2"))) // 24
+// compute(syard(split("5 + 7 / 2"))) // 8
+// compute(syard(split("5 * 7 / 2"))) // 17
+// compute(syard(split("9 + 24 / ( 7 - 3 )"))) // 15
+
+}
+
+