main_testing2/danube.scala
changeset 379 5616b45d656f
parent 347 4de31fdc0d67
child 384 6e1237691307
--- a/main_testing2/danube.scala	Sat Nov 28 15:58:36 2020 +0000
+++ b/main_testing2/danube.scala	Mon Nov 30 00:06:15 2020 +0000
@@ -1,17 +1,19 @@
 // Core Part about Movie Recommendations 
 // at Danube.co.uk
-//===========================================
+//========================================
+
+
+object CW7b { // for purposes of generating a jar
 
 import io.Source
 import scala.util._
 
-object CW7b { // for purposes of generating a jar
 
 // (1) Implement the function get_csv_url which takes an url-string
 //     as argument and requests the corresponding file. The two urls
 //     of interest are ratings_url and movies_url, which correspond 
 //     to CSV-files.
-//     The function should ReTurn the CSV file appropriately broken
+//     The function should return the CSV file appropriately broken
 //     up into lines, and the first line should be dropped (that is without
 //     the header of the CSV file). The result is a list of strings (lines
 //     in the file).
@@ -33,14 +35,19 @@
 //movies.length   // 9742
 
 // (2) Implement two functions that process the CSV files. The ratings
-//     function filters out all ratings below 4 and ReTurns a list of 
-//     (userID, movieID) pairs. The movies function just ReTurns a list 
+//     function filters out all ratings below 4 and returns a list of 
+//     (userID, movieID) pairs. The movies function just returns a list 
 //     of (movieId, title) pairs.
 
 
+//def process_ratings(lines: List[String]) : List[(String, String)] = {
+//  for (cols <- lines.map(_.split(",").toList); 
+//       if (cols(2).toFloat >= 4)) yield (cols(0), cols(1))  
+//}
+
 def process_ratings(lines: List[String]) : List[(String, String)] = {
   for (cols <- lines.map(_.split(",").toList); 
-       if (cols(2).toFloat >= 4)) yield (cols(0), cols(1))  
+       if (cols(2).toInt >= 4)) yield (cols(0), cols(1))  
 }
 
 def process_movies(lines: List[String]) : List[(String, String)] = {
@@ -77,18 +84,8 @@
   }
 }
 
-//
-//val ls = List(("1", "a"), ("2", "a"), ("1", "c"), ("2", "a"), ("1", "c"))
-//
-//val m = groupById(ls, Map())
-//
-//m.getOrElse("1", Nil).count(_ == "c") // => 2
-//m.getOrElse("1", Nil).count(_ == "a") // => 1
-
 // test cases
 //val ratings_map = groupById(good_ratings, Map())
-//groupById(good_ratings, Map()).get("214")
-//groupById(good_ratings, Map()).toList.minBy(_._2.length)
 //val movies_map = movie_names.toMap
 
 //ratings_map.get("414").get.map(movies_map.get(_)) // most prolific recommender with 1227 positive ratings
@@ -96,10 +93,9 @@
 //ratings_map.get("214").get.map(movies_map.get(_)) // least prolific recommender with only 1 positive rating
 
 
-
 //(4) Implement a function that takes a ratings map and a movie_name as argument.
 // The function calculates all suggestions containing
-// the movie mov in its recommendations. It ReTurns a list of all these
+// the movie mov in its recommendations. It returns a list of all these
 // recommendations (each of them is a list and needs to have mov deleted, 
 // otherwise it might happen we recommend the same movie).
 
@@ -124,23 +120,14 @@
 // (5) Implement a suggestions function which takes a rating
 // map and a movie_name as arguments. It calculates all the recommended
 // movies sorted according to the most frequently suggested movie(s) first.
-
-// needed in Scala 2.13.
- 
-def mapValues[S, T, R](m: Map[S, T], f: T => R) =
-  m.map { case (x, y) => (x, f(y)) }
-
 def suggestions(recs: Map[String, List[String]], 
                     mov_name: String) : List[String] = {
   val favs = favourites(recs, mov_name).flatten
-  val favs_counted = mapValues(favs.groupBy(identity), (v:List[String]) => v.size).toList
+  val favs_counted = favs.groupBy(identity).view.mapValues(_.size).toList
   val favs_sorted = favs_counted.sortBy(_._2).reverse
   favs_sorted.map(_._1)
 }
 
-// check
-// groupMap is equivalent to groupBy(key).mapValues(_.map(f))
-
 // test cases
 
 //suggestions(ratings_map, "912")
@@ -163,7 +150,7 @@
 // recommendations(ratings_map, movies_map, "912")
 //   => List(Godfather, Star Wars: Episode IV - A NewHope (1977))
 
-//recommendations(ratings_map, movies_map, "260")
+// recommendations(ratings_map, movies_map, "260")
 //   => List(Star Wars: Episode V - The Empire Strikes Back (1980), 
 //           Star Wars: Episode VI - Return of the Jedi (1983))
 
@@ -177,20 +164,53 @@
 //   => List(Shawshank Redemption, Forrest Gump (1994))
 
 // recommendations(ratings_map, movies_map, "4")
-//   => Nil  (there are three ratings fro this movie in ratings.csv but they are not positive)     
+//   => Nil  (there are three ratings for this movie in ratings.csv but they are not positive)     
+
+// (7) Calculate the recommendations for all movies according to
+// what the recommendations function in (6) produces (this
+// can take a few seconds). Put all recommendations into a list 
+// (of strings) and count how often the strings occur in
+// this list. This produces a list of string-int pairs,
+// where the first component is the movie name and the second
+// is the number of how many times they were recommended. 
+// Sort all the pairs according to the number
+// of times they were recommended (most recommended movie name 
+// first).
+
+def occurrences(xs: List[String]): List[(String, Int)] =
+  for (x <- xs.distinct) yield (x, xs.count(_ == x))
+
+def most_recommended(recs: Map[String, List[String]],
+                     movs: Map[String, String]) : List[(String, Int)] = {
+   val all =  (for (name <- movs.toList.map(_._1)) yield {
+     recommendations(recs, movs, name)                     
+   }).flatten
+   val occs = occurrences(all)
+   occs.sortBy(_._2).reverse
+}
 
 
-// If you want to calculate the recomendations for all movies.
-// Will take a few seconds calculation time.
-
-//val all = for (name <- movie_names.map(_._1)) yield {
-//  recommendations(ratings_map, movies_map, name)
-//}
-
-// helper functions
-//List().take(2)
-//List(1).take(2)
-//List(1,2).take(2)
-//List(1,2,3).take(2)
+//most_recommended(ratings_map, movies_map).take(3)
+// =>
+// List((Matrix,698), 
+//      (Star Wars: Episode IV - A New Hope (1977),402), 
+//      (Jerry Maguire (1996),382))
 
 }
+
+//val ratings_url = """https://nms.kcl.ac.uk/christian.urban/ratings.csv"""
+//val movies_url = """https://nms.kcl.ac.uk/christian.urban/movies.csv"""
+
+/*
+val ratings = get_csv_url(ratings_url)
+val movies = get_csv_url(movies_url)
+
+val good_ratings = process_ratings(ratings)
+val movie_names = process_movies(movies)
+
+val ratings_map = groupById(good_ratings, Map())
+val movies_map = movie_names.toMap
+
+
+println(most_recommended(ratings_map, movies_map).take(3))
+*/