--- a/pre_testing1/collatz.scala Sun Nov 15 13:10:43 2020 +0000
+++ b/pre_testing1/collatz.scala Tue Nov 17 00:34:55 2020 +0000
@@ -1,50 +1,54 @@
-// Basic Part about the 3n+1 conjecture
-//==================================
-
-// generate jar with
-// > scala -d collatz.jar collatz.scala
+object CW6a {
-object CW6a { // for purposes of generating a jar
+//(1) Complete the collatz function below. It should
+// recursively calculate the number of steps needed
+// until the collatz series reaches the number 1.
+// If needed, you can use an auxiliary function that
+// performs the recursion. The function should expect
+// arguments in the range of 1 to 1 Million.
-def collatz(n: Long): Long =
- if (n == 1) 0 else
- if (n % 2 == 0) 1 + collatz(n / 2) else
- 1 + collatz(3 * n + 1)
+def collatz(n: Long) : Long =
+ if ( n == 1) 1;
+ else if (n % 2 == 0) 1 + collatz( n / 2);
+ else 1 + collatz( n * 3 + 1);
-def collatz_max(bnd: Long): (Long, Long) = {
- val all = for (i <- (1L to bnd)) yield (collatz(i), i)
- all.maxBy(_._1)
-}
+//(2) Complete the collatz_max function below. It should
+// calculate how many steps are needed for each number
+// from 1 up to a bound and then calculate the maximum number of
+// steps and the corresponding number that needs that many
+// steps. Again, you should expect bounds in the range of 1
+// up to 1 Million. The first component of the pair is
+// the maximum number of steps and the second is the
+// corresponding number.
-//collatz_max(1000000)
-//collatz_max(10000000)
-//collatz_max(100000000)
-
-/* some test cases
-val bnds = List(10, 100, 1000, 10000, 100000, 1000000)
+def collatz_max(bnd: Long) : (Long, Long) =
+ ((1.toLong to bnd).toList.map
+ (n => collatz(n)).max ,
+ (1.toLong to bnd).toList.map
+ (n => collatz(n)).indexOf((1.toLong to bnd).toList.map
+ (n => collatz(n)).max) + 1);
-for (bnd <- bnds) {
- val (steps, max) = collatz_max(bnd)
- println(s"In the range of 1 - ${bnd} the number ${max} needs the maximum steps of ${steps}")
-}
-
-*/
+//(3) Implement a function that calculates the last_odd
+// number in a collatz series. For this implement an
+// is_pow_of_two function which tests whether a number
+// is a power of two. The function is_hard calculates
+// whether 3n + 1 is a power of two. Again you can
+// assume the input ranges between 1 and 1 Million,
+// and also assume that the input of last_odd will not
+// be a power of 2.
+//idk
+ def is_pow_of_two(n: Long) : Boolean =
+ if ( n & ( n - 1) == 0) true;
+ else false;
-def is_pow(n: Long) : Boolean = (n & (n - 1)) == 0
-
-def is_hard(n: Long) : Boolean = is_pow(3 * n + 1)
-
-def last_odd(n: Long) : Long =
- if (is_hard(n)) n else
- if (n % 2 == 0) last_odd(n / 2) else
- last_odd(3 * n + 1)
+def is_hard(n: Long) : Boolean =
+ if ( (3*n + 1) & 3*n == 0) true;
+ else false;
-//for (i <- 130 to 10000) println(s"$i: ${last_odd(i)}")
-//for (i <- 1 to 100) println(s"$i: ${collatz(i)}")
-
-}
+def last_odd(n: Long) : Long = ???
+}