main_marking1/drumb.scala
changeset 463 0315d9983cd0
parent 424 daf561a83ba6
--- a/main_marking1/drumb.scala	Sun Jan 15 10:58:13 2023 +0000
+++ b/main_marking1/drumb.scala	Sat Mar 11 22:01:53 2023 +0000
@@ -1,13 +1,7 @@
 // Main Part 1 about a really dumb investment strategy
-//=====================================================
-
+//===================================================
 
-// generate jar with
-//   > scala -d drumb.jar  drumb.scala
-
-
-object M1 { 
-
+object M1 {
 
 //two test portfolios
 
@@ -18,159 +12,79 @@
 import io.Source
 import scala.util._
 
-// (1) The function below takes a stock symbol and a year as arguments.
-//     It should read the corresponding CSV-file and reads the January 
-//     data from the given year. The data should be collected in a list of
-//     strings for each line in the CSV-file.
-
-def get_january_data(symbol: String, year: Int) : List[String] = 
-  Source.fromFile(symbol ++ ".csv")("ISO-8859-1").getLines().toList.filter(_.startsWith(year.toString))
+// ADD YOUR CODE BELOW
+//======================
 
 
-//test cases
-//blchip_portfolio.map(get_january_data(_, 2018))
-//rstate_portfolio.map(get_january_data(_, 2018))
-
-//get_january_data("GOOG", 1980)
-//get_january_data("GOOG", 2010)
-//get_january_data("FB", 2014)
-
-//get_january_data("PLD", 1980)
-//get_january_data("EQIX", 2010)
-//get_january_data("ESS", 2014)
-
-
-// (2) From the output of the get_january_data function, the next function 
-//     should extract the first line (if it exists) and the corresponding
-//     first trading price in that year with type Option[Double]. If no line 
-//     is generated by get_january_data then the result is None; Some if 
-//     there is a price.
-
+// (1) 
+def get_january_data(symbol: String, year: Int) : List[String] = {
+  Try(Source.fromFile(s"${symbol}.csv").getLines.toList.filter(_.startsWith(year.toString))).getOrElse(Nil)
+}
+// (2) 
 def get_first_price(symbol: String, year: Int) : Option[Double] = {
-  val data = Try(Some(get_january_data(symbol, year).head)) getOrElse None 
-  data.map(_.split(",").toList(1).toDouble)
+  val list = get_january_data(symbol, year)
+  if (list == Nil) None else {
+    Some(list.head.split(",").toList(1).toDouble)
+  }
 }
 
-//test cases
-//get_first_price("GOOG", 1980)
-//get_first_price("GOOG", 2010)
-//get_first_price("FB", 2014)
 
-/*
-for (i <- 1978 to 2018) {
-  println(blchip_portfolio.map(get_first_price(_, i)))
-}
-
-for (i <- 1978 to 2018) {
-  println(rstate_portfolio.map(get_first_price(_, i)))
-}
-*/ 
-
-
-// (3) Complete the function below that obtains all first prices
-//     for the stock symbols from a portfolio (list of strings) and 
-//     for the given range of years. The inner lists are for the
-//     stock symbols and the outer list for the years.
-
-def get_prices(portfolio: List[String], years: Range): List[List[Option[Double]]] = 
-  for (year <- years.toList) yield
-    for (symbol <- portfolio) yield get_first_price(symbol, year)
-
-
-//test cases
-
-//println("Task 3 data from Google and Apple in 2010 to 2012")
-//val goog_aapl_prices = get_prices(List("GOOG", "AAPL"), 2010 to 2012)
-//println(goog_aapl_prices.toString ++ "\n")
-
-//val p_fb = get_prices(List("FB"), 2012 to 2014)
-//val tt = get_prices(List("BIDU"), 2004 to 2008)
-
-
-// (4) The function below calculates the change factor (delta) between
-//     a price in year n and a price in year n + 1. 
-
-def get_delta(price_old: Option[Double], price_new: Option[Double]) : Option[Double] = {
-  (price_old, price_new) match {
-    case (Some(x), Some(y)) => Some((y - x) / x)
-    case _ => None
+// (3) 
+def get_prices(portfolio: List[String], years: Range) : List[List[Option[Double]]] = {
+  for (n <- years.toList) yield{
+    for (m <- portfolio) yield{
+      get_first_price(m, n)
+    }
   }
 }
 
 
-// (5) The next function calculates all change factors for all prices (from a 
-//     portfolio). The input to this function are the nested lists created by 
-//     get_prices above.
 
-def get_deltas(data: List[List[Option[Double]]]):  List[List[Option[Double]]] =
-  for (i <- (0 until (data.length - 1)).toList) yield 
-    for (j <- (0 until (data(0).length)).toList) yield get_delta(data(i)(j), data(i + 1)(j))
-
-
-
-// test case using the prices calculated above
-
-//println("Task 5 change prices from Google and Apple in 2010 and 2011")
-//val goog_aapl_deltas = get_deltas(goog_aapl_prices)
-//println(goog_aapl_deltas.toString ++ "\n")
-
-//val ttd = get_deltas(tt)
-
-
-// (6) Write a function that given change factors, a starting balance and an index,
-//     calculates the yearly yield, i.e. new balance, according to our dumb investment 
-//     strategy. Index points to a year in the data list.
-
-def yearly_yield(data: List[List[Option[Double]]], balance: Long, index: Int): Long = {
-  val somes = data(index).flatten
-  val somes_length = somes.length
-  if (somes_length == 0) balance
-  else {
-    val portion: Double = balance.toDouble / somes_length.toDouble
-    balance + (for (x <- somes) yield (x * portion)).sum.toLong
-  }
-}
-
-// test case using the deltas calculated above
-//println("Task 6 yield from Google and Apple in 2010 with  balance 100")
-
-//val d0 = goog_aapl_deltas(0)(0)
-//val d1 = goog_aapl_deltas(0)(1)
-//println(s"50 * ${d0.get} + 50 * ${d1.get} = ${50.toDouble * d0.get + 50.toDouble * d1.get}")
-
-
-//val goog_aapl_yield = yearly_yield(goog_aapl_deltas, 100, 0)
-//println("Rounded yield: " ++ goog_aapl_yield.toString ++ "\n")
-
-
-//yearly_yield(get_prices(rstate_portfolio, 2016 to 2018), 100, 2) 
-//get_prices(rstate_portfolio, 2016 to 2018)(2).flatten.sum
-
-
-// (7) Write a function compound_yield that calculates the overall balance for a 
-//     range of years where in each year the yearly profit is compounded to the new 
-//     balances and then re-invested into our portfolio. For this use the function and 
-//     results generated under (6). The function investment calls compound_yield
-//     with the appropriate deltas and the first index.
-
-
-def compound_yield(data: List[List[Option[Double]]], balance: Long, index: Int): Long = {
-  if (index >= data.length) balance else {
-    val new_balance = yearly_yield(data, balance, index)
-    compound_yield(data, new_balance, index + 1)
-  }
-}
-
-def investment(portfolio: List[String], years: Range, start_balance: Long): Long = {
-  compound_yield(get_deltas(get_prices(portfolio, years)), start_balance, 0)
+// (4) 
+def get_delta(price_old: Option[Double], price_new: Option[Double]) : Option[Double] = {
+  if (price_old != None && price_new != None) Some((price_new.get - price_old.get) / price_old.get) else None
 }
 
 
 
-//test cases for the two portfolios given above
+// (5) 
+def get_deltas(data: List[List[Option[Double]]]) :  List[List[Option[Double]]] = {
+  for (n <- data.tail) yield{
+    for (m <- n) yield{
+      get_delta(data(data.tail.indexOf(n))(n.indexOf(m)),m)
+    }
+  }
+}
+
+// (6) 
+def yearly_yield(data: List[List[Option[Double]]], balance: Long, index: Int) : Long = {
+  if(data.length == 0) balance else{
+    val equal = balance / data(index).flatten.length
+    val list = for(n <- data(index).flatten) yield n * equal
+    (balance + list.sum).toLong
+  }
+}
 
-  println("Real data: " + investment(rstate_portfolio, 1978 to 2019, 100))
-  println("Blue data: " + investment(blchip_portfolio, 1978 to 2019, 100))
+// (7) 
+def compound_yield(data: List[List[Option[Double]]], balance: Long, index: Int) : Long = {
+  val deltas = get_deltas(data)
+  if (deltas.length == 0) balance else{
+      if(deltas.length - 1 == index) yearly_yield(deltas, balance, index) else compound_yield(data, yearly_yield(deltas, balance, index), index + 1)
+  }
+}
+
+def investment(portfolio: List[String], years: Range, start_balance: Long) : Long = {
+  val list = get_prices(portfolio, years)
+  compound_yield(list, start_balance, 0)
+}
+
+
+
+
+//Test cases for the two portfolios given above
+
+//println("Real data: " + investment(rstate_portfolio, 1978 to 2019, 100))
+//println("Blue data: " + investment(blchip_portfolio, 1978 to 2019, 100))
 
 
 }
@@ -178,19 +92,8 @@
 
 
 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+// This template code is subject to copyright 
+// by King's College London, 2022. Do not 
+// make the template code public in any shape 
+// or form, and do not exchange it with other 
+// students under any circumstance.