|
1 // Main Part 3 about Regular Expression Matching |
|
2 //============================================= |
|
3 |
|
4 object M3 { |
|
5 |
|
6 // Regular Expressions |
|
7 abstract class Rexp |
|
8 case object ZERO extends Rexp |
|
9 case object ONE extends Rexp |
|
10 case class CHAR(c: Char) extends Rexp |
|
11 case class ALTs(rs: List[Rexp]) extends Rexp // alternatives |
|
12 case class SEQ(r1: Rexp, r2: Rexp) extends Rexp // sequence |
|
13 case class STAR(r: Rexp) extends Rexp // star |
|
14 |
|
15 |
|
16 // some convenience for typing regular expressions |
|
17 |
|
18 //the usual binary choice can be defined in terms of ALTs |
|
19 def ALT(r1: Rexp, r2: Rexp) = ALTs(List(r1, r2)) |
|
20 |
|
21 |
|
22 import scala.language.implicitConversions |
|
23 import scala.language.reflectiveCalls |
|
24 |
|
25 def charlist2rexp(s: List[Char]): Rexp = s match { |
|
26 case Nil => ONE |
|
27 case c::Nil => CHAR(c) |
|
28 case c::s => SEQ(CHAR(c), charlist2rexp(s)) |
|
29 } |
|
30 implicit def string2rexp(s: String): Rexp = charlist2rexp(s.toList) |
|
31 |
|
32 implicit def RexpOps (r: Rexp) = new { |
|
33 def | (s: Rexp) = ALT(r, s) |
|
34 def % = STAR(r) |
|
35 def ~ (s: Rexp) = SEQ(r, s) |
|
36 } |
|
37 |
|
38 implicit def stringOps (s: String) = new { |
|
39 def | (r: Rexp) = ALT(s, r) |
|
40 def | (r: String) = ALT(s, r) |
|
41 def % = STAR(s) |
|
42 def ~ (r: Rexp) = SEQ(s, r) |
|
43 def ~ (r: String) = SEQ(s, r) |
|
44 } |
|
45 |
|
46 // (1) Complete the function nullable according to |
|
47 // the definition given in the coursework; this |
|
48 // function checks whether a regular expression |
|
49 // can match the empty string and Returns a boolean |
|
50 // accordingly. |
|
51 |
|
52 def nullable (r: Rexp) : Boolean = ??? |
|
53 |
|
54 |
|
55 // (2) Complete the function der according to |
|
56 // the definition given in the coursework; this |
|
57 // function calculates the derivative of a |
|
58 // regular expression w.r.t. a character. |
|
59 |
|
60 def der (c: Char, r: Rexp) : Rexp = ??? |
|
61 |
|
62 |
|
63 // (3) Implement the flatten function flts. It |
|
64 // deletes 0s from a list of regular expressions |
|
65 // and also 'spills out', or flattens, nested |
|
66 // ALTernativeS. |
|
67 |
|
68 def flts(rs: List[Rexp]) : List[Rexp] = ??? |
|
69 |
|
70 |
|
71 |
|
72 // (4) Complete the simp function according to |
|
73 // the specification given in the coursework description; |
|
74 // this function simplifies a regular expression from |
|
75 // the inside out, like you would simplify arithmetic |
|
76 // expressions; however it does not simplify inside |
|
77 // STAR-regular expressions. Use the _.distinct and |
|
78 // flts functions. |
|
79 |
|
80 def simp(r: Rexp) : Rexp = ??? |
|
81 |
|
82 |
|
83 // (5) Complete the two functions below; the first |
|
84 // calculates the derivative w.r.t. a string; the second |
|
85 // is the regular expression matcher taking a regular |
|
86 // expression and a string and checks whether the |
|
87 // string matches the regular expression |
|
88 |
|
89 def ders (s: List[Char], r: Rexp) : Rexp = ??? |
|
90 |
|
91 def matcher(r: Rexp, s: String): Boolean = ??? |
|
92 |
|
93 |
|
94 // (6) Complete the size function for regular |
|
95 // expressions according to the specification |
|
96 // given in the coursework. |
|
97 |
|
98 def size(r: Rexp): Int = ??? |
|
99 |
|
100 |
|
101 // some testing data |
|
102 |
|
103 /* |
|
104 matcher(("a" ~ "b") ~ "c", "abc") // => true |
|
105 matcher(("a" ~ "b") ~ "c", "ab") // => false |
|
106 |
|
107 // the supposedly 'evil' regular expression (a*)* b |
|
108 val EVIL = SEQ(STAR(STAR(CHAR('a'))), CHAR('b')) |
|
109 |
|
110 matcher(EVIL, "a" * 1000 ++ "b") // => true |
|
111 matcher(EVIL, "a" * 1000) // => false |
|
112 |
|
113 // size without simplifications |
|
114 size(der('a', der('a', EVIL))) // => 28 |
|
115 size(der('a', der('a', der('a', EVIL)))) // => 58 |
|
116 |
|
117 // size with simplification |
|
118 size(simp(der('a', der('a', EVIL)))) // => 8 |
|
119 size(simp(der('a', der('a', der('a', EVIL))))) // => 8 |
|
120 |
|
121 // Python needs around 30 seconds for matching 28 a's with EVIL. |
|
122 // Java 9 and later increase this to an "astonishing" 40000 a's in |
|
123 // 30 seconds. |
|
124 // |
|
125 // Lets see how long it really takes to match strings with |
|
126 // 5 Million a's...it should be in the range of a couple |
|
127 // of seconds. |
|
128 |
|
129 def time_needed[T](i: Int, code: => T) = { |
|
130 val start = System.nanoTime() |
|
131 for (j <- 1 to i) code |
|
132 val end = System.nanoTime() |
|
133 "%.5f".format((end - start)/(i * 1.0e9)) |
|
134 } |
|
135 |
|
136 for (i <- 0 to 5000000 by 500000) { |
|
137 println(s"$i ${time_needed(2, matcher(EVIL, "a" * i))} secs.") |
|
138 } |
|
139 |
|
140 // another "power" test case |
|
141 simp(Iterator.iterate(ONE:Rexp)(r => SEQ(r, ONE | ONE)).drop(50).next()) == ONE |
|
142 |
|
143 // the Iterator produces the rexp |
|
144 // |
|
145 // SEQ(SEQ(SEQ(..., ONE | ONE) , ONE | ONE), ONE | ONE) |
|
146 // |
|
147 // where SEQ is nested 50 times. |
|
148 |
|
149 */ |
|
150 |
|
151 } |