|
1 // Shunting Yard Algorithm |
|
2 // by Edsger Dijkstra |
|
3 // ======================== |
|
4 |
|
5 object C3a { |
|
6 |
|
7 // type of tokens |
|
8 type Toks = List[String] |
|
9 |
|
10 // the operations in the basic version of the algorithm |
|
11 val ops = List("+", "-", "*", "/") |
|
12 |
|
13 // the precedences of the operators |
|
14 val precs = Map("+" -> 1, |
|
15 "-" -> 1, |
|
16 "*" -> 2, |
|
17 "/" -> 2) |
|
18 |
|
19 // helper function for splitting strings into tokens |
|
20 def split(s: String) : Toks = s.split(" ").toList |
|
21 |
|
22 |
|
23 // (1) Implement below the shunting yard algorithm. The most |
|
24 // convenient way to this in Scala is to implement a recursive |
|
25 // function and to heavily use pattern matching. The function syard |
|
26 // takes some input tokens as first argument. The second and third |
|
27 // arguments represent the stack and the output of the shunting yard |
|
28 // algorithm. |
|
29 // |
|
30 // In the marking, you can assume the function is called only with |
|
31 // an empty stack and an empty output list. You can also assume the |
|
32 // input os only properly formatted (infix) arithmetic expressions |
|
33 // (all parentheses will be well-nested, the input only contains |
|
34 // operators and numbers). |
|
35 |
|
36 // You can implement any additional helper function you need. I found |
|
37 // it helpful to implement two auxiliary functions for the pattern matching: |
|
38 // |
|
39 |
|
40 def is_op(op: String) : Boolean = ??? |
|
41 def prec(op1: String, op2: String) : Boolean = ??? |
|
42 |
|
43 |
|
44 def syard(toks: Toks, st: Toks = Nil, out: Toks = Nil) : Toks = ??? |
|
45 |
|
46 |
|
47 // test cases |
|
48 //syard(split("3 + 4 * ( 2 - 1 )")) // 3 4 2 1 - * + |
|
49 //syard(split("10 + 12 * 33")) // 10 12 33 * + |
|
50 //syard(split("( 5 + 7 ) * 2")) // 5 7 + 2 * |
|
51 //syard(split("5 + 7 / 2")) // 5 7 2 / + |
|
52 //syard(split("5 * 7 / 2")) // 5 7 * 2 / |
|
53 //syard(split("9 + 24 / ( 7 - 3 )")) // 9 24 7 3 - / + |
|
54 |
|
55 //syard(split("3 + 4 + 5")) // 3 4 + 5 + |
|
56 //syard(split("( ( 3 + 4 ) + 5 )")) // 3 4 + 5 + |
|
57 //syard(split("( 3 + ( 4 + 5 ) )")) // 3 4 5 + + |
|
58 //syard(split("( ( ( 3 ) ) + ( ( 4 + ( 5 ) ) ) )")) // 3 4 5 + + |
|
59 |
|
60 |
|
61 // (2) Implement a compute function that evaluates an input list |
|
62 // in postfix notation. This function takes a list of tokens |
|
63 // and a stack as argumenta. The function should produce the |
|
64 // result as an integer using the stack. You can assume |
|
65 // this function will be only called with proper postfix |
|
66 // expressions. |
|
67 |
|
68 def compute(toks: Toks, st: List[Int] = Nil) : Int = ??? |
|
69 |
|
70 |
|
71 // test cases |
|
72 // compute(syard(split("3 + 4 * ( 2 - 1 )"))) // 7 |
|
73 // compute(syard(split("10 + 12 * 33"))) // 406 |
|
74 // compute(syard(split("( 5 + 7 ) * 2"))) // 24 |
|
75 // compute(syard(split("5 + 7 / 2"))) // 8 |
|
76 // compute(syard(split("5 * 7 / 2"))) // 17 |
|
77 // compute(syard(split("9 + 24 / ( 7 - 3 )"))) // 15 |
|
78 |
|
79 } |
|
80 |
|
81 |