|      1 // Shunting Yard Algorithm  |         | 
|      2 // including Associativity for Operators  |         | 
|      3 // ===================================== |         | 
|      4  |         | 
|      5 object CW9b {  |         | 
|      6  |         | 
|      7 // type of tokens |         | 
|      8 type Toks = List[String] |         | 
|      9  |         | 
|     10 // helper function for splitting strings into tokens |         | 
|     11 def split(s: String) : Toks = s.split(" ").toList |         | 
|     12  |         | 
|     13 // left- and right-associativity |         | 
|     14 abstract class Assoc |         | 
|     15 case object LA extends Assoc |         | 
|     16 case object RA extends Assoc |         | 
|     17  |         | 
|     18 // power is right-associative, |         | 
|     19 // everything else is left-associative |         | 
|     20 def assoc(s: String) : Assoc = s match { |         | 
|     21   case "^" => RA |         | 
|     22   case _ => LA |         | 
|     23 } |         | 
|     24  |         | 
|     25 // the precedences of the operators |         | 
|     26 val precs = Map("+" -> 1, |         | 
|     27   		 "-" -> 1, |         | 
|     28 		 "*" -> 2, |         | 
|     29 		 "/" -> 2, |         | 
|     30                  "^" -> 4) |         | 
|     31  |         | 
|     32 // the operations in the basic version of the algorithm |         | 
|     33 val ops = List("+", "-", "*", "/", "^") |         | 
|     34  |         | 
|     35 // (8) Implement the extended version of the shunting yard algorithm. |         | 
|     36 // This version should properly account for the fact that the power  |         | 
|     37 // operation is right-associative. Apart from the extension to include |         | 
|     38 // the power operation, you can make the same assumptions as in  |         | 
|     39 // basic version. |         | 
|     40  |         | 
|     41 def is_op(op: String) : Boolean = ops.contains(op) |         | 
|     42  |         | 
|     43 def prec(op1: String, op2: String) : Boolean = assoc(op1) match { |         | 
|     44   case LA => precs(op1) <= precs(op2) |         | 
|     45   case RA => precs(op1) < precs(op2) |         | 
|     46 } |         | 
|     47  |         | 
|     48 def syard(toks: Toks, st: Toks = Nil, out: Toks = Nil) : Toks = (toks, st, out) match { |         | 
|     49   case (Nil, _, _) => out.reverse ::: st |         | 
|     50   case (num::in, st, out) if (num.forall(_.isDigit)) =>  |         | 
|     51     syard(in, st, num :: out) |         | 
|     52   case (op1::in, op2::st, out) if (is_op(op1) && is_op(op2) && prec(op1, op2)) => |         | 
|     53     syard(op1::in, st, op2 :: out)  |         | 
|     54   case (op1::in, st, out) if (is_op(op1)) => syard(in, op1::st, out) |         | 
|     55   case ("("::in, st, out) => syard(in, "("::st, out) |         | 
|     56   case (")"::in, op2::st, out) => |         | 
|     57     if (op2 == "(") syard(in, st, out) else syard(")"::in, st, op2 :: out) |         | 
|     58   case (in, st, out) => { |         | 
|     59     println(s"in: ${in}   st: ${st}   out: ${out.reverse}") |         | 
|     60     Nil |         | 
|     61   }   |         | 
|     62 }  |         | 
|     63  |         | 
|     64 def op_comp(s: String, n1: Long, n2: Long) = s match { |         | 
|     65   case "+" => n2 + n1 |         | 
|     66   case "-" => n2 - n1 |         | 
|     67   case "*" => n2 * n1 |         | 
|     68   case "/" => n2 / n1 |         | 
|     69   case "^" => Math.pow(n2, n1).toLong |         | 
|     70 }  |         | 
|     71  |         | 
|     72 def compute(toks: Toks, st: List[Long] = Nil) : Long = (toks, st) match { |         | 
|     73   case (Nil, st) => st.head |         | 
|     74   case (op::in, n1::n2::st) if (is_op(op)) => compute(in, op_comp(op, n1, n2)::st) |         | 
|     75   case (num::in, st) => compute(in, num.toInt::st)   |         | 
|     76 } |         | 
|     77  |         | 
|     78  |         | 
|     79  |         | 
|     80  |         | 
|     81 //compute(syard(split("3 + 4 * ( 2 - 1 )")))   // 7 |         | 
|     82 //compute(syard(split("10 + 12 * 33")))       // 406 |         | 
|     83 //compute(syard(split("( 5 + 7 ) * 2")))      // 24 |         | 
|     84 //compute(syard(split("5 + 7 / 2")))          // 8 |         | 
|     85 //compute(syard(split("5 * 7 / 2")))          // 17 |         | 
|     86 //compute(syard(split("9 + 24 / ( 7 - 3 )"))) // 15 |         | 
|     87  |         | 
|     88 //compute(syard(split("4 ^ 3 ^ 2")))      // 262144 |         | 
|     89 //compute(syard(split("4 ^ ( 3 ^ 2 )")))  // 262144 |         | 
|     90 //compute(syard(split("( 4 ^ 3 ) ^ 2")))  // 4096 |         | 
|     91 //compute(syard(split("( 3 + 1 ) ^ 2 ^ 3")))   // 65536 |         | 
|     92  |         | 
|     93 //syard(split("3 + 4 * 8 / ( 5 - 1 ) ^ 2 ^ 3"))  // 3 4 8 * 5 1 - 2 3 ^ ^ / + |         | 
|     94 //compute(syard(split("3 + 4 * 8 / ( 5 - 1 ) ^ 2 ^ 3"))) // 3 |         | 
|     95  |         | 
|     96 //compute(syard(split("( 3 + 1 ) ^ 2 ^ 3")))   // 65536 |         | 
|     97  |         | 
|     98  |         | 
|     99  |         | 
|    100 } |         |