1 object CW6a { | 
     1 // Basic Part about the 3n+1 conjecture  | 
         | 
     2 //==================================  | 
     2   | 
     3   | 
     3 //(1) Complete the collatz function below. It should  | 
     4 // generate jar with  | 
     4 //    recursively calculate the number of steps needed   | 
     5 //   > scala -d collatz.jar  collatz.scala  | 
     5 //    until the collatz series reaches the number 1.  | 
     6   | 
     6 //    If needed, you can use an auxiliary function that  | 
     7 object CW6a { // for purposes of generating a jar | 
     7 //    performs the recursion. The function should expect  | 
     8   | 
     8 //    arguments in the range of 1 to 1 Million.  | 
     9 def collatz(n: Long): Long =  | 
     9 def stepsCounter(n: Long, s: Long) : Long = n match{ | 
    10   if (n == 1) 0 else  | 
    10     case 1 => s  | 
    11     if (n % 2 == 0) 1 + collatz(n / 2) else   | 
    11     case n if(n%2==0) => stepsCounter(n/2,s+1)  | 
    12       1 + collatz(3 * n + 1)  | 
    12     case _ => stepsCounter(3*n+1, s+1)  | 
    13   | 
         | 
    14   | 
         | 
    15 def collatz_max(bnd: Long): (Long, Long) = { | 
         | 
    16   val all = for (i <- (1L to bnd)) yield (collatz(i), i)  | 
         | 
    17   all.maxBy(_._1)  | 
    13 }  | 
    18 }  | 
    14   | 
    19   | 
    15 def collatz(n: Long) : Long = n match { | 
    20 //collatz_max(1000000)  | 
    16     case n if(n>0) => stepsCounter(n,0)  | 
    21 //collatz_max(10000000)  | 
    17     case n if(n<=0) => stepsCounter(1,0)  | 
    22 //collatz_max(100000000)  | 
         | 
    23   | 
         | 
    24   | 
         | 
    25 /* some test cases  | 
         | 
    26 val bnds = List(10, 100, 1000, 10000, 100000, 1000000)  | 
         | 
    27   | 
         | 
    28 for (bnd <- bnds) { | 
         | 
    29   val (steps, max) = collatz_max(bnd)  | 
         | 
    30   println(s"In the range of 1 - ${bnd} the number ${max} needs the maximum steps of ${steps}") | 
         | 
    31 }  | 
         | 
    32   | 
         | 
    33 */  | 
         | 
    34   | 
         | 
    35 def is_pow(n: Long) : Boolean = (n & (n - 1)) == 0  | 
         | 
    36   | 
         | 
    37 def is_hard(n: Long) : Boolean = is_pow(3 * n + 1)  | 
         | 
    38   | 
         | 
    39 def last_odd(n: Long) : Long =   | 
         | 
    40   if (is_hard(n)) n else  | 
         | 
    41     if (n % 2 == 0) last_odd(n / 2) else   | 
         | 
    42       last_odd(3 * n + 1)  | 
         | 
    43   | 
         | 
    44   | 
         | 
    45 //for (i <- 130 to 10000) println(s"$i: ${last_odd(i)}") | 
         | 
    46 for (i <- 1 to 100) println(s"$i: ${collatz(i)}") | 
         | 
    47   | 
    18 }  | 
    48 }  | 
    19   | 
    49   | 
    20   | 
    50   | 
    21   | 
    51   | 
    22 //(2) Complete the collatz_max function below. It should  | 
         | 
    23 //    calculate how many steps are needed for each number   | 
         | 
    24 //    from 1 up to a bound and then calculate the maximum number of  | 
         | 
    25 //    steps and the corresponding number that needs that many   | 
         | 
    26 //    steps. Again, you should expect bounds in the range of 1  | 
         | 
    27 //    up to 1 Million. The first component of the pair is  | 
         | 
    28 //    the maximum number of steps and the second is the   | 
         | 
    29 //    corresponding number.  | 
         | 
    30   | 
         | 
    31 def collatz_max(bnd: Long) : (Long, Long) =  { | 
         | 
    32     val allCollatz = for(i<-1L until bnd) yield collatz(i)  | 
         | 
    33     val pair = (allCollatz.max, (allCollatz.indexOf(allCollatz.max) +1).toLong)  | 
         | 
    34     pair  | 
         | 
    35 }  | 
         | 
    36   | 
         | 
    37 }  | 
         |