templates2/danube.scala
changeset 203 eb188f9ac038
child 284 9a04eb6a2291
equal deleted inserted replaced
202:f7bcb27d1940 203:eb188f9ac038
       
     1 // Part 2 and 3 about Movie Recommendations 
       
     2 // at Danube.co.uk
       
     3 //===========================================
       
     4 
       
     5 import io.Source
       
     6 import scala.util._
       
     7 
       
     8 // (1) Implement the function get_csv_url which takes an url-string
       
     9 //     as argument and requests the corresponding file. The two urls
       
    10 //     of interest are ratings_url and movies_url, which correspond 
       
    11 //     to CSV-files.
       
    12 //
       
    13 //     The function should ReTurn the CSV-file appropriately broken
       
    14 //     up into lines, and the first line should be dropped (that is without
       
    15 //     the header of the CSV-file). The result is a list of strings (lines
       
    16 //     in the file).
       
    17 
       
    18 //def get_csv_url(url: String) : List[String] = ...
       
    19 
       
    20 
       
    21 val ratings_url = """https://nms.kcl.ac.uk/christian.urban/ratings.csv"""
       
    22 val movies_url = """https://nms.kcl.ac.uk/christian.urban/movies.csv"""
       
    23 
       
    24 // testcases
       
    25 //-----------
       
    26 //val ratings = get_csv_url(ratings_url)
       
    27 //val movies = get_csv_url(movies_url)
       
    28 
       
    29 //ratings.length  // 87313
       
    30 //movies.length   // 9742
       
    31 
       
    32 
       
    33 
       
    34 // (2) Implement two functions that process the CSV-files from (1). The ratings
       
    35 //     function filters out all ratings below 4 and ReTurns a list of 
       
    36 //     (userID, movieID) pairs. The movies function just ReTurns a list 
       
    37 //     of (movieID, title) pairs.
       
    38 
       
    39 
       
    40 //def process_ratings(lines: List[String]) : List[(String, String)] = ...
       
    41 
       
    42 //def process_movies(lines: List[String]) : List[(String, String)] = ...
       
    43 
       
    44 
       
    45 // testcases
       
    46 //-----------
       
    47 //val good_ratings = process_ratings(ratings)
       
    48 //val movie_names = process_movies(movies)
       
    49 
       
    50 //good_ratings.length   //48580
       
    51 //movie_names.length    // 9742
       
    52 
       
    53 
       
    54 
       
    55 //==============================================
       
    56 // Do not change anything below, unless you want 
       
    57 // to submit the file for the advanced part 3!
       
    58 //==============================================
       
    59 
       
    60 
       
    61 
       
    62 // (3) Implement a grouping function that calculates a Map
       
    63 //     containing the userIDs and all the corresponding recommendations 
       
    64 //     (list of movieIDs). This  should be implemented in a tail
       
    65 //     recursive fashion, using a Map m as accumulator. This Map m
       
    66 //     is set to Map() at the beginning of the calculation.
       
    67 
       
    68 //def groupById(ratings: List[(String, String)], 
       
    69 //              m: Map[String, List[String]]) : Map[String, List[String]] = ...
       
    70 
       
    71 
       
    72 // testcases
       
    73 //-----------
       
    74 //val ratings_map = groupById(good_ratings, Map())
       
    75 //val movies_map = movie_names.toMap
       
    76 
       
    77 //ratings_map.get("414").get.map(movies_map.get(_)) 
       
    78 //    => most prolific recommender with 1227 positive ratings
       
    79 
       
    80 //ratings_map.get("474").get.map(movies_map.get(_)) 
       
    81 //    => second-most prolific recommender with 787 positive ratings
       
    82 
       
    83 //ratings_map.get("214").get.map(movies_map.get(_)) 
       
    84 //    => least prolific recommender with only 1 positive rating
       
    85 
       
    86 
       
    87 
       
    88 // (4) Implement a function that takes a ratings map and a movie_name as argument.
       
    89 //     The function calculates all suggestions containing
       
    90 //     the movie in its recommendations. It ReTurns a list of all these
       
    91 //     recommendations (each of them is a list and needs to have the movie deleted, 
       
    92 //     otherwise it might happen we recommend the same movie).
       
    93 
       
    94 
       
    95 //def favourites(m: Map[String, List[String]], mov: String) : List[List[String]] = ...
       
    96 
       
    97 
       
    98 // testcases
       
    99 //-----------
       
   100 // movie ID "912" -> Casablanca (1942)
       
   101 //          "858" -> Godfather
       
   102 //          "260" -> Star Wars: Episode IV - A New Hope (1977)
       
   103 
       
   104 //favourites(ratings_map, "912").length  // => 80
       
   105 
       
   106 // That means there are 80 users that recommend the movie with ID 912.
       
   107 // Of these 80  users, 55 gave a good rating to movie 858 and
       
   108 // 52 a good rating to movies 260, 318, 593.
       
   109 
       
   110 
       
   111 
       
   112 // (5) Implement a suggestions function which takes a rating
       
   113 //     map and a movie_name as arguments. It calculates all the recommended
       
   114 //     movies sorted according to the most frequently suggested movie(s) first.
       
   115 
       
   116 //def suggestions(recs: Map[String, List[String]], 
       
   117 //                mov_name: String) : List[String] = ...
       
   118 
       
   119 
       
   120 // testcases
       
   121 //-----------
       
   122 
       
   123 //suggestions(ratings_map, "912")
       
   124 //suggestions(ratings_map, "912").length  
       
   125 // => 4110 suggestions with List(858, 260, 318, 593, ...)
       
   126 //    being the most frequently suggested movies
       
   127 
       
   128 
       
   129 
       
   130 // (6) Implement a recommendations function which generates at most
       
   131 //     *two* of the most frequently suggested movies. It ReTurns the 
       
   132 //     actual movie names, not the movieIDs.
       
   133 
       
   134 
       
   135 //def recommendations(recs: Map[String, List[String]],
       
   136 //                    movs: Map[String, String],
       
   137 //                    mov_name: String) : List[String] = ...
       
   138 
       
   139 
       
   140 
       
   141 // testcases
       
   142 //-----------
       
   143 // recommendations(ratings_map, movies_map, "912")
       
   144 //   => List(Godfather, Star Wars: Episode IV - A NewHope (1977))
       
   145 
       
   146 //recommendations(ratings_map, movies_map, "260")
       
   147 //   => List(Star Wars: Episode V - The Empire Strikes Back (1980), 
       
   148 //           Star Wars: Episode VI - Return of the Jedi (1983))
       
   149 
       
   150 // recommendations(ratings_map, movies_map, "2")
       
   151 //   => List(Lion King, Jurassic Park (1993))
       
   152 
       
   153 // recommendations(ratings_map, movies_map, "0")
       
   154 //   => Nil
       
   155 
       
   156 // recommendations(ratings_map, movies_map, "1")
       
   157 //   => List(Shawshank Redemption, Forrest Gump (1994))
       
   158 
       
   159 // recommendations(ratings_map, movies_map, "4")
       
   160 //   => Nil  (there are three ratings for this movie in ratings.csv but they are not positive)     
       
   161 
       
   162 
       
   163 // If you want to calculate the recommendations for all movies,
       
   164 // then use this code (it will take a few seconds calculation time).
       
   165 
       
   166 //val all = for (name <- movie_names.map(_._1)) yield {
       
   167 //  recommendations(ratings_map, movies_map, name)
       
   168 //}
       
   169 
       
   170 // helper functions
       
   171 //List().take(2
       
   172 //List(1).take(2)
       
   173 //List(1,2).take(2)
       
   174 //List(1,2,3).take(2)
       
   175 
       
   176