|         |      1 // Shunting Yard Algorithm  | 
|         |      2 // including Associativity for Operators  | 
|         |      3 // ===================================== | 
|         |      4  | 
|         |      5 object C3b { | 
|         |      6  | 
|         |      7  | 
|         |      8 // type of tokens | 
|         |      9 type Toks = List[String] | 
|         |     10  | 
|         |     11 // helper function for splitting strings into tokens | 
|         |     12 def split(s: String) : Toks = s.split(" ").toList | 
|         |     13  | 
|         |     14 // left- and right-associativity | 
|         |     15 abstract class Assoc | 
|         |     16 case object LA extends Assoc | 
|         |     17 case object RA extends Assoc | 
|         |     18  | 
|         |     19  | 
|         |     20 // power is right-associative, | 
|         |     21 // everything else is left-associative | 
|         |     22 def assoc(s: String) : Assoc = s match { | 
|         |     23   case "^" => RA | 
|         |     24   case _ => LA | 
|         |     25 } | 
|         |     26  | 
|         |     27  | 
|         |     28 // the precedences of the operators | 
|         |     29 val precs = Map("+" -> 1, | 
|         |     30   		"-" -> 1, | 
|         |     31 		"*" -> 2, | 
|         |     32 		"/" -> 2, | 
|         |     33                 "^" -> 4) | 
|         |     34  | 
|         |     35 // the operations in the basic version of the algorithm | 
|         |     36 val ops = List("+", "-", "*", "/", "^") | 
|         |     37  | 
|         |     38 // (3) Implement the extended version of the shunting yard algorithm. | 
|         |     39 // This version should properly account for the fact that the power  | 
|         |     40 // operation is right-associative. Apart from the extension to include | 
|         |     41 // the power operation, you can make the same assumptions as in  | 
|         |     42 // basic version. | 
|         |     43  | 
|         |     44 def syard(toks: Toks, st: Toks = Nil, out: Toks = Nil) : Toks = ??? | 
|         |     45  | 
|         |     46  | 
|         |     47 // test cases | 
|         |     48 // syard(split("3 + 4 * 8 / ( 5 - 1 ) ^ 2 ^ 3"))  // 3 4 8 * 5 1 - 2 3 ^ ^ / + | 
|         |     49  | 
|         |     50  | 
|         |     51 // (4) Implement a compute function that produces an Int for an | 
|         |     52 // input list of tokens in postfix notation. | 
|         |     53  | 
|         |     54 def compute(toks: Toks, st: List[Int] = Nil) : Int = ??? | 
|         |     55  | 
|         |     56  | 
|         |     57 // test cases | 
|         |     58 // compute(syard(split("3 + 4 * ( 2 - 1 )")))   // 7 | 
|         |     59 // compute(syard(split("10 + 12 * 33")))       // 406 | 
|         |     60 // compute(syard(split("( 5 + 7 ) * 2")))      // 24 | 
|         |     61 // compute(syard(split("5 + 7 / 2")))          // 8 | 
|         |     62 // compute(syard(split("5 * 7 / 2")))          // 17 | 
|         |     63 // compute(syard(split("9 + 24 / ( 7 - 3 )"))) // 15 | 
|         |     64 // compute(syard(split("4 ^ 3 ^ 2")))      // 262144 | 
|         |     65 // compute(syard(split("4 ^ ( 3 ^ 2 )")))  // 262144 | 
|         |     66 // compute(syard(split("( 4 ^ 3 ) ^ 2")))  // 4096 | 
|         |     67 // compute(syard(split("( 3 + 1 ) ^ 2 ^ 3")))   // 65536 | 
|         |     68  | 
|         |     69 } |