pre_testing1/collatz.scala
changeset 363 e5c1d69cffa4
parent 362 1bde878ba6c9
child 373 d29cd5883c7b
equal deleted inserted replaced
362:1bde878ba6c9 363:e5c1d69cffa4
     1 object CW6a {
     1 // Basic Part about the 3n+1 conjecture
       
     2 //==================================
     2 
     3 
     3 //(1) Complete the collatz function below. It should
     4 // generate jar with
     4 //    recursively calculate the number of steps needed
     5 //   > scala -d collatz.jar  collatz.scala
     5 //    until the collatz series reaches the number 1.
       
     6 //    If needed, you can use an auxiliary function that
       
     7 //    performs the recursion. The function should expect
       
     8 //    arguments in the range of 1 to 1 Million.
       
     9 
     6 
    10 def collatz(n: Long) : Long =
     7 object CW6a { // for purposes of generating a jar
    11     if ( n == 1) 1;
     8 
    12     else if (n % 2 == 0) 1 + collatz( n / 2);
     9 /*
    13     else 1 + collatz( n * 3 + 1);
    10 def collatz(n: Long): Long =
       
    11   if (n == 1) 0 else
       
    12     if (n % 2 == 0) 1 + collatz(n / 2) else 
       
    13       1 + collatz(3 * n + 1)
       
    14 */
       
    15 
       
    16 def aux(n: Long, acc: Long) : Long =
       
    17   if (n == 1) acc else
       
    18     if (n % 2 == 0) aux(n / 2, acc + 1) else
       
    19       aux(3 * n + 1, acc + 1)
    14 
    20 
    15 
    21 
    16 //(2) Complete the collatz_max function below. It should
    22 def collatz(n: Long): Long = aux(n, 0)
    17 //    calculate how many steps are needed for each number
       
    18 //    from 1 up to a bound and then calculate the maximum number of
       
    19 //    steps and the corresponding number that needs that many
       
    20 //    steps. Again, you should expect bounds in the range of 1
       
    21 //    up to 1 Million. The first component of the pair is
       
    22 //    the maximum number of steps and the second is the
       
    23 //    corresponding number.
       
    24 
    23 
    25 def collatz_max(bnd: Long) : (Long, Long) =
    24 def collatz_max(bnd: Long): (Long, Long) = {
    26      ((1.toLong to bnd).toList.map
    25   val all = for (i <- (1L to bnd)) yield (collatz(i), i)
    27         (n => collatz(n)).max ,
    26   all.maxBy(_._1)
    28             (1.toLong to bnd).toList.map
    27 }
    29                 (n => collatz(n)).indexOf((1.toLong to bnd).toList.map
       
    30                     (n => collatz(n)).max) + 1);
       
    31 
    28 
    32 //(3) Implement a function that calculates the last_odd
    29 //collatz_max(1000000)
    33 //    number in a collatz series.  For this implement an
    30 //collatz_max(10000000)
    34 //    is_pow_of_two function which tests whether a number
    31 //collatz_max(100000000)
    35 //    is a power of two. The function is_hard calculates
       
    36 //    whether 3n + 1 is a power of two. Again you can
       
    37 //    assume the input ranges between 1 and 1 Million,
       
    38 //    and also assume that the input of last_odd will not
       
    39 //    be a power of 2.
       
    40 //idk
       
    41  def is_pow_of_two(n: Long) : Boolean =
       
    42     if ( n & ( n - 1) == 0) true;
       
    43     else false;
       
    44 
    32 
    45 def is_hard(n: Long) : Boolean =
    33 /* some test cases
    46     if ( (3*n + 1) & 3*n == 0) true;
    34 val bnds = List(10, 100, 1000, 10000, 100000, 1000000)
    47     else false;
    35 
       
    36 for (bnd <- bnds) {
       
    37   val (steps, max) = collatz_max(bnd)
       
    38   println(s"In the range of 1 - ${bnd} the number ${max} needs the maximum steps of ${steps}")
       
    39 }
       
    40 
       
    41 */
       
    42 
       
    43 def is_pow(n: Long) : Boolean = (n & (n - 1)) == 0
       
    44 
       
    45 def is_hard(n: Long) : Boolean = is_pow(3 * n + 1)
       
    46 
       
    47 def last_odd(n: Long) : Long = 
       
    48   if (is_hard(n)) n else
       
    49     if (n % 2 == 0) last_odd(n / 2) else 
       
    50       last_odd(3 * n + 1)
    48 
    51 
    49 
    52 
    50 def last_odd(n: Long) : Long = ???
    53 //for (i <- 130 to 10000) println(s"$i: ${last_odd(i)}")
       
    54 //for (i <- 1 to 100) println(s"$i: ${collatz(i)}")
       
    55 
       
    56 }
    51 
    57 
    52 
    58 
    53 
    59 
    54 }