2 //==================================================  | 
     2 //==================================================  | 
     3   | 
     3   | 
     4 type Pos = (Int, Int)    // a position on a chessboard   | 
     4 type Pos = (Int, Int)    // a position on a chessboard   | 
     5 type Path = List[Pos]    // a path...a list of positions  | 
     5 type Path = List[Pos]    // a path...a list of positions  | 
     6   | 
     6   | 
     7 //(1a) Complete the function that tests whether the position   | 
     7 def print_board(dim: Int, path: Path): Unit = { | 
     8 // is inside the board and not yet element in the path.  | 
     8   println  | 
     9   | 
     9   for (i <- 0 until dim) { | 
    10 def is_legal(dim: Int, path: Path)(x: Pos): Boolean = ...  | 
    10     for (j <- 0 until dim) { | 
         | 
    11       print(f"${path.reverse.indexOf((j, dim - i - 1))}%3.0f ") | 
         | 
    12     }  | 
         | 
    13     println  | 
         | 
    14   }   | 
         | 
    15 }  | 
    11   | 
    16   | 
    12   | 
    17   | 
    13 //(1b) Complete the function that calculates for a position   | 
    18 // 1 mark  | 
    14 // all legal onward moves that are not already in the path.   | 
         | 
    15 // The moves should be ordered in a "clockwise" order.  | 
         | 
    16    | 
         | 
    17 def legal_moves(dim: Int, path: Path, x: Pos): List[Pos] = ...  | 
         | 
    18   | 
    19   | 
    19 //assert(legal_moves(8, Nil, (2,2)) ==   | 
    20 def is_legal(dim: Int, path: Path, x: Pos): Boolean =   | 
    20 //  List((3,4), (4,3), (4,1), (3,0), (1,0), (0,1), (0,3), (1,4)))  | 
    21   0 <= x._1 && 0 <= x._2 && x._1 < dim && x._2 < dim && !path.contains(x)  | 
    21 //assert(legal_moves(8, Nil, (7,7)) == List((6,5), (5,6)))  | 
    22   | 
    22 //assert(legal_moves(8, List((4,1), (1,0)), (2,2)) ==   | 
    23 assert(is_legal(8, Nil)((3,4)) == true)  | 
    23 //  List((3,4), (4,3), (3,0), (0,1), (0,3), (1,4)))  | 
    24 assert(is_legal(8, List((4,1), (1,0)))((4,1)) == false)  | 
    24 //assert(legal_moves(8, List((6,6)), (7,7)) == List((6,5), (5,6)))  | 
    25 assert(is_legal(2, Nil)((0,0)) == true)  | 
    25   | 
    26   | 
    26   | 
    27   | 
    27 //(1c) Complete the two recursive functions below.   | 
    28 def add_pair(x: Pos)(y: Pos): Pos =   | 
    28 // They exhaustively search for open tours starting from the   | 
    29   (x._1 + y._1, x._2 + y._2)  | 
    29 // given path. The first function counts all possible open tours,   | 
         | 
    30 // and the second collects all open tours in a list of paths.  | 
         | 
    31   | 
    30   | 
    32 def count_tours(dim: Int, path: Path): Int = ...  | 
    31 def moves(x: Pos): List[Pos] =   | 
         | 
    32   List(( 1,  2),( 2,  1),( 2, -1),( 1, -2),  | 
         | 
    33        (-1, -2),(-2, -1),(-2,  1),(-1,  2)).map(add_pair(x))  | 
    33   | 
    34   | 
    34 def enum_tours(dim: Int, path: Path): List[Path] = ...  | 
    35 // 1 mark  | 
         | 
    36   | 
         | 
    37 def legal_moves(dim: Int, path: Path, x: Pos): List[Pos] =   | 
         | 
    38   moves(x).filter(is_legal(dim, path))  | 
         | 
    39   | 
         | 
    40 assert(legal_moves(8, Nil, (2,2)) ==   | 
         | 
    41   List((3,4), (4,3), (4,1), (3,0), (1,0), (0,1), (0,3), (1,4)))  | 
         | 
    42 assert(legal_moves(8, Nil, (7,7)) == List((6,5), (5,6)))  | 
         | 
    43 assert(legal_moves(8, List((4,1), (1,0)), (2,2)) ==   | 
         | 
    44   List((3,4), (4,3), (3,0), (0,1), (0,3), (1,4)))  | 
         | 
    45 assert(legal_moves(8, List((6,6)), (7,7)) == List((6,5), (5,6)))  | 
         | 
    46 assert(legal_moves(1, Nil, (0,0)) == List())  | 
         | 
    47 assert(legal_moves(2, Nil, (0,0)) == List())  | 
         | 
    48 assert(legal_moves(3, Nil, (0,0)) == List((1,2), (2,1)))  | 
         | 
    49   | 
         | 
    50 // 2 marks  | 
         | 
    51   | 
         | 
    52 def count_tours(dim: Int, path: Path): Int = { | 
         | 
    53   if (path.length == dim * dim) 1  | 
         | 
    54   else   | 
         | 
    55     (for (x <- legal_moves(dim, path, path.head)) yield count_tours(dim, x::path)).sum  | 
         | 
    56 }  | 
         | 
    57   | 
         | 
    58 def enum_tours(dim: Int, path: Path): List[Path] = { | 
         | 
    59   if (path.length == dim * dim) List(path)  | 
         | 
    60   else   | 
         | 
    61     (for (x <- legal_moves(dim, path, path.head)) yield enum_tours(dim, x::path)).flatten  | 
         | 
    62 }  | 
         | 
    63   | 
         | 
    64 // as far as tasks go  | 
    35   | 
    65   | 
    36   | 
    66   | 
         | 
    67   | 
         | 
    68 def count_all_tours(dim: Int) = { | 
         | 
    69   for (i <- (0 until dim).toList;   | 
         | 
    70        j <- (0 until dim).toList) yield count_tours(dim, List((i, j)))  | 
         | 
    71 }  | 
         | 
    72   | 
         | 
    73 def enum_all_tours(dim: Int): List[Path] = { | 
         | 
    74   (for (i <- (0 until dim).toList;   | 
         | 
    75         j <- (0 until dim).toList) yield enum_tours(dim, List((i, j)))).flatten  | 
         | 
    76 }  | 
         | 
    77   | 
         | 
    78   | 
         | 
    79 println("Number of tours starting from (0, 0)") | 
         | 
    80   | 
         | 
    81 for (dim <- 1 to 5) { | 
         | 
    82   println(s"${dim} x ${dim} " + count_tours(dim, List((0, 0)))) | 
         | 
    83 }  | 
         | 
    84   | 
         | 
    85 for (dim <- 1 to 5) { | 
         | 
    86   println(s"${dim} x ${dim} " + count_all_tours(dim)) | 
         | 
    87 }  | 
         | 
    88   | 
         | 
    89 for (dim <- 1 to 5) { | 
         | 
    90   val ts = enum_tours(dim, List((0, 0)))  | 
         | 
    91   println(s"${dim} x ${dim} ")    | 
         | 
    92   if (ts != Nil) { | 
         | 
    93     print_board(dim, ts.head)  | 
         | 
    94     println(ts.head)  | 
         | 
    95   }  | 
         | 
    96 }  | 
         | 
    97   | 
         | 
    98   |