core_testing1/collatz.scala
changeset 399 b17a98b0c52f
parent 373 d29cd5883c7b
child 401 9471c3b7ea02
equal deleted inserted replaced
398:7d9b765d4012 399:b17a98b0c52f
       
     1 // Basic Part about the 3n+1 conjecture
       
     2 //==================================
       
     3 
       
     4 // generate jar with
       
     5 //   > scala -d collatz.jar  collatz.scala
       
     6 
       
     7 object C1 { // for purposes of generating a jar
       
     8 
       
     9 def collatz(n: Long): Long =
       
    10   if (n == 1) 0 else
       
    11     if (n % 2 == 0) 1 + collatz(n / 2) else 
       
    12       1 + collatz(3 * n + 1)
       
    13 
       
    14 
       
    15 def collatz_max(bnd: Long): (Long, Long) = {
       
    16   val all = for (i <- (1L to bnd)) yield (collatz(i), i)
       
    17   all.maxBy(_._1)
       
    18 }
       
    19 
       
    20 //collatz_max(1000000)
       
    21 //collatz_max(10000000)
       
    22 //collatz_max(100000000)
       
    23 
       
    24 /* some test cases
       
    25 val bnds = List(10, 100, 1000, 10000, 100000, 1000000)
       
    26 
       
    27 for (bnd <- bnds) {
       
    28   val (steps, max) = collatz_max(bnd)
       
    29   println(s"In the range of 1 - ${bnd} the number ${max} needs the maximum steps of ${steps}")
       
    30 }
       
    31 
       
    32 */
       
    33 
       
    34 def is_pow(n: Long) : Boolean = (n & (n - 1)) == 0
       
    35 
       
    36 def is_hard(n: Long) : Boolean = is_pow(3 * n + 1)
       
    37 
       
    38 def last_odd(n: Long) : Long = 
       
    39   if (is_hard(n)) n else
       
    40     if (n % 2 == 0) last_odd(n / 2) else 
       
    41       last_odd(3 * n + 1)
       
    42 
       
    43 
       
    44 //for (i <- 130 to 10000) println(s"$i: ${last_odd(i)}")
       
    45 //for (i <- 1 to 100) println(s"$i: ${collatz(i)}")
       
    46 
       
    47 }
       
    48 
       
    49 
       
    50