testing3/knight1.scala
changeset 221 9e7897f25e13
parent 220 3020f8c76baa
child 222 e52cc402caee
equal deleted inserted replaced
220:3020f8c76baa 221:9e7897f25e13
     1 // Part 1 about finding and counting Knight's tours
     1 // Part 1 about finding Knight's tours
     2 //==================================================
     2 //=====================================
     3 
     3 
     4 //object CW8a {   // for preparing the jar
     4 // If you need any auxiliary function, feel free to 
       
     5 // implement it, but do not make any changes to the
       
     6 // templates below. Also have a look whether the functions
       
     7 // at the end are of any help.
       
     8 
     5 
     9 
     6 type Pos = (Int, Int)    // a position on a chessboard 
    10 type Pos = (Int, Int)    // a position on a chessboard 
     7 type Path = List[Pos]    // a path...a list of positions
    11 type Path = List[Pos]    // a path...a list of positions
     8 
    12 
       
    13 //(1) Complete the function that tests whether the position x
       
    14 //    is inside the board and not yet element in the path.
     9 
    15 
    10 // for measuring time in the JAR
    16 def is_legal(dim: Int, path: Path, x: Pos) : Boolean = ((!(path.contains(x))) && (x._1 < dim) && (x._2 < dim))
       
    17 
       
    18 
       
    19 
       
    20 //(2) Complete the function that calculates for a position x
       
    21 //    all legal onward moves that are not already in the path. 
       
    22 //    The moves should be ordered in a "clockwise" manner.
       
    23 
       
    24 
       
    25 def legal_moves(dim: Int, path: Path, x: Pos) : List[Pos] ={
       
    26   val y = List((x._1 + 1, x._2 + 2),
       
    27                (x._1 + 2, x._2 + 1),
       
    28                (x._1 + 2, x._2 - 1),
       
    29                (x._1 + 1, x._2 - 2),
       
    30                (x._1 - 1, x._2 - 2),
       
    31                (x._1 - 2, x._2 - 1),
       
    32                (x._1 - 2, x._2 + 1),
       
    33                (x._1 - 1, x._2 + 2)
       
    34    )
       
    35   y.filter(next => is_legal(dim, path, next))
       
    36 }
       
    37 
       
    38 //some test cases
       
    39 //
       
    40 //assert(legal_moves(8, Nil, (2,2)) == List((3,4), (4,3), (4,1), (3,0), (1,0), (0,1), (0,3), (1,4)))
       
    41 //assert(legal_moves(8, Nil, (7,7)) == List((6,5), (5,6)))
       
    42 //assert(legal_moves(8, List((4,1), (1,0)), (2,2)) ==  List((3,4), (4,3), (3,0), (0,1), (0,3), (1,4)))
       
    43 //assert(legal_moves(8, List((6,6)), (7,7)) == List((6,5), (5,6)))
       
    44 
       
    45 
       
    46 //(3) Complete the two recursive functions below. 
       
    47 //    They exhaustively search for knight's tours starting from the 
       
    48 //    given path. The first function counts all possible tours, 
       
    49 //    and the second collects all tours in a list of paths.
       
    50 
       
    51 def count_tours(dim: Int, path: Path) : Int = {
       
    52   if(path.length == dim*dim) 1 else
       
    53     (for(i <- legal_moves(dim, path, path.head)) yield
       
    54       count_tours(dim, i :: path)
       
    55     ).sum
       
    56 }
       
    57 
       
    58 def enum_tours(dim: Int, path: Path) : List[Path] ={
       
    59   if(path.length == dim*dim) List(path) else
       
    60     (for(i <- legal_moves(dim, path, path.head)) yield
       
    61       enum_tours(dim, i :: path)
       
    62     ).flatten
       
    63 }
       
    64 
       
    65 //(5) Implement a first-function that finds the first 
       
    66 //    element, say x, in the list xs where f is not None. 
       
    67 //    In that case Return f(x), otherwise None. If possible,
       
    68 //    calculate f(x) only once.
       
    69 
       
    70 def first(xs: List[Pos], f: Pos => Option[Path]) : Option[Path] = {
       
    71   if(xs == Nil) None
       
    72   else(
       
    73     for(x <- xs) yield{
       
    74       val a = f(x)
       
    75       if(a != None) a
       
    76       else first(xs.drop(1), f)
       
    77     }
       
    78   ).head
       
    79 }
       
    80 
       
    81 // test cases
       
    82 //def foo(x: (Int, Int)) = if (x._1 > 3) Some(List(x)) else None
       
    83 //
       
    84 //first(List((1, 0),(2, 0),(3, 0),(4, 0)), foo)   // Some(List((4,0)))
       
    85 //first(List((1, 0),(2, 0),(3, 0)), foo)          // None
       
    86 
       
    87 
       
    88 
       
    89 
       
    90 //(6) Implement a function that uses the first-function from (5) for
       
    91 //    trying out onward moves, and searches recursively for a
       
    92 //    knight tour on a dim * dim-board.
       
    93 
       
    94 
       
    95 // def first_tour(dim: Int, path: Path) : Option[Path] = {
       
    96 //   first(legal_moves(dim, path, path.head), (x : Pos => ))
       
    97 // }
       
    98  
       
    99 /* Helper functions
       
   100 
       
   101 
       
   102 // for measuring time
    11 def time_needed[T](code: => T) : T = {
   103 def time_needed[T](code: => T) : T = {
    12   val start = System.nanoTime()
   104   val start = System.nanoTime()
    13   val result = code
   105   val result = code
    14   val end = System.nanoTime()
   106   val end = System.nanoTime()
    15   println(f"Time needed: ${(end - start) / 1.0e9}%3.3f secs.")
   107   println(f"Time needed: ${(end - start) / 1.0e9}%3.3f secs.")
    16   result
   108   result
    17 }
   109 }
       
   110 
       
   111 // can be called for example with
       
   112 //     time_needed(count_tours(dim, List((0, 0))))
       
   113 // in order to print out the time that is needed for 
       
   114 // running count_tours
    18 
   115 
    19 // for printing a board
   116 // for printing a board
    20 def print_board(dim: Int, path: Path): Unit = {
   117 def print_board(dim: Int, path: Path): Unit = {
    21   println
   118   println
    22   for (i <- 0 until dim) {
   119   for (i <- 0 until dim) {
    25     }
   122     }
    26     println
   123     println
    27   } 
   124   } 
    28 }
   125 }
    29 
   126 
    30 def is_legal(dim: Int, path: Path, x: Pos): Boolean = 
       
    31   0 <= x._1 && 0 <= x._2 && x._1 < dim && x._2 < dim && !path.contains(x)
       
    32 
   127 
    33 // testcases
       
    34 //assert(is_legal(8, Nil, (3, 4)) == true)
       
    35 //assert(is_legal(8, List((4, 1), (1, 0)), (4, 1)) == false)
       
    36 //assert(is_legal(2, Nil, (0, 0)) == true)
       
    37 
       
    38 
       
    39 def add_pair(x: Pos, y: Pos): Pos = 
       
    40   (x._1 + y._1, x._2 + y._2)
       
    41 
       
    42 def moves(x: Pos): List[Pos] = 
       
    43   List(( 1,  2),( 2,  1),( 2, -1),( 1, -2),
       
    44        (-1, -2),(-2, -1),(-2,  1),(-1,  2)).map(add_pair(x, _))
       
    45 
       
    46 // 1 mark
       
    47 
       
    48 def legal_moves(dim: Int, path: Path, x: Pos): List[Pos] = 
       
    49   moves(x).filter(is_legal(dim, path, _))
       
    50 
       
    51 // testcases
       
    52 //assert(legal_moves(8, Nil, (2,2)) == 
       
    53 //  List((3,4), (4,3), (4,1), (3,0), (1,0), (0,1), (0,3), (1,4)))
       
    54 //assert(legal_moves(8, Nil, (7,7)) == List((6,5), (5,6)))
       
    55 //assert(legal_moves(8, List((4,1), (1,0)), (2,2)) == 
       
    56 //  List((3,4), (4,3), (3,0), (0,1), (0,3), (1,4)))
       
    57 //assert(legal_moves(8, List((6,6)), (7,7)) == List((6,5), (5,6)))
       
    58 //assert(legal_moves(1, Nil, (0,0)) == List())
       
    59 //assert(legal_moves(2, Nil, (0,0)) == List())
       
    60 //assert(legal_moves(3, Nil, (0,0)) == List((1,2), (2,1)))
       
    61 
       
    62 // 2 marks
       
    63 
       
    64 def tcount_tours(dim: Int, path: Path): Int = {
       
    65   if (path.length == dim * dim) 1
       
    66   else 
       
    67     (for (x <- legal_moves(dim, path, path.head)) yield tcount_tours(dim, x::path)).sum
       
    68 }
       
    69 
       
    70 def count_tours(dim: Int, path: Path) =
       
    71   time_needed(tcount_tours(dim: Int, path: Path))
       
    72 
       
    73 
       
    74 def tenum_tours(dim: Int, path: Path): List[Path] = {
       
    75   if (path.length == dim * dim) List(path)
       
    76   else 
       
    77     (for (x <- legal_moves(dim, path, path.head)) yield tenum_tours(dim, x::path)).flatten
       
    78 }
       
    79 
       
    80 def enum_tours(dim: Int, path: Path) =
       
    81   time_needed(tenum_tours(dim: Int, path: Path))
       
    82 
       
    83 // test cases
       
    84 
       
    85 /*
       
    86 def count_all_tours(dim: Int) = {
       
    87   for (i <- (0 until dim).toList; 
       
    88        j <- (0 until dim).toList) yield count_tours(dim, List((i, j)))
       
    89 }
       
    90 
       
    91 def enum_all_tours(dim: Int): List[Path] = {
       
    92   (for (i <- (0 until dim).toList; 
       
    93         j <- (0 until dim).toList) yield enum_tours(dim, List((i, j)))).flatten
       
    94 }
       
    95 
       
    96 
       
    97 println("Number of tours starting from (0, 0)")
       
    98 
       
    99 for (dim <- 1 to 5) {
       
   100   println(s"${dim} x ${dim} " + time_needed(0, count_tours(dim, List((0, 0)))))
       
   101 }
       
   102 
       
   103 println("Number of tours starting from all fields")
       
   104 
       
   105 for (dim <- 1 to 5) {
       
   106   println(s"${dim} x ${dim} " + time_needed(0, count_all_tours(dim)))
       
   107 }
       
   108 
       
   109 for (dim <- 1 to 5) {
       
   110   val ts = enum_tours(dim, List((0, 0)))
       
   111   println(s"${dim} x ${dim} ")   
       
   112   if (ts != Nil) {
       
   113     print_board(dim, ts.head)
       
   114     println(ts.head)
       
   115   }
       
   116 }
       
   117 */
   128 */
   118 
       
   119 // 1 mark
       
   120 
       
   121 def first(xs: List[Pos], f: Pos => Option[Path]): Option[Path] = xs match {
       
   122   case Nil => None
       
   123   case x::xs => {
       
   124     val result = f(x)
       
   125     if (result.isDefined) result else first(xs, f)
       
   126   }
       
   127 }
       
   128 
       
   129 // test cases
       
   130 //def foo(x: (Int, Int)) = if (x._1 > 3) Some(List(x)) else None
       
   131 //
       
   132 //first(List((1, 0),(2, 0),(3, 0),(4, 0)), foo)
       
   133 //first(List((1, 0),(2, 0),(3, 0)), foo)
       
   134 
       
   135 
       
   136 // 1 mark
       
   137 
       
   138 def tfirst_tour(dim: Int, path: Path): Option[Path] = {
       
   139   if (path.length == dim * dim) Some(path)
       
   140   else
       
   141     first(legal_moves(dim, path, path.head), (x:Pos) => tfirst_tour(dim, x::path))
       
   142 }
       
   143 
       
   144 def first_tour(dim: Int, path: Path) = 
       
   145   time_needed(tfirst_tour(dim: Int, path: Path))
       
   146 
       
   147 
       
   148 /*
       
   149 for (dim <- 1 to 8) {
       
   150   val t = first_tour(dim, List((0, 0)))
       
   151   println(s"${dim} x ${dim} " + (if (t == None) "" else { print_board(dim, t.get) ; "" }))
       
   152 }
       
   153 */
       
   154 
       
   155 // 15 secs for 8 x 8
       
   156 //val ts1 = time_needed(0,first_tour(8, List((0, 0))).get)
       
   157 
       
   158 // no result for 4 x 4
       
   159 //val ts2 = time_needed(0, first_tour(4, List((0, 0))))
       
   160 
       
   161 // 0.3 secs for 6 x 6
       
   162 //val ts3 = time_needed(0, first_tour(6, List((0, 0))))
       
   163 
       
   164 // 15 secs for 8 x 8
       
   165 //time_needed(0, print_board(8, first_tour(8, List((0, 0))).get))
       
   166 
       
   167 
       
   168 //}
       
   169 
       
   170