1 // Shunting Yard Algorithm |
|
2 // by Edsger Dijkstra |
|
3 // ======================== |
|
4 |
|
5 object CW9a { |
|
6 |
|
7 type Toks = List[String] |
|
8 |
|
9 // the operations in the simple version |
|
10 val ops = List("+", "-", "*", "/") |
|
11 |
|
12 // the precedences of the operators |
|
13 val precs = Map("+" -> 1, |
|
14 "-" -> 1, |
|
15 "*" -> 2, |
|
16 "/" -> 2) |
|
17 |
|
18 // helper function for splitting strings into tokens |
|
19 def split(s: String) : Toks = s.split(" ").toList |
|
20 |
|
21 // (6) Implement below the shunting yard algorithm. The most |
|
22 // convenient way to this in Scala is to implement a recursive |
|
23 // function and to heavily use pattern matching. The function syard |
|
24 // takes some input tokens as first argument. The second and third |
|
25 // arguments represent the stack and the output of the shunting yard |
|
26 // algorithm. |
|
27 // |
|
28 // In the marking, you can assume the function is called only with |
|
29 // an empty stack and an empty output list. You can also assume the |
|
30 // input os only properly formatted (infix) arithmetic expressions |
|
31 // (all parentheses will be well-nested, the input only contains |
|
32 // operators and numbers). |
|
33 |
|
34 // You can implement any additional helper function you need. I found |
|
35 // it helpful to implement two auxiliary functions for the pattern matching: |
|
36 // |
|
37 |
|
38 def is_op(op: String) : Boolean = ops.contains(op) |
|
39 |
|
40 def prec(op1: String, op2: String) : Boolean = precs(op1) <= precs(op2) |
|
41 |
|
42 |
|
43 def syard(toks: Toks, st: Toks = Nil, out: Toks = Nil) : Toks = (toks, st, out) match { |
|
44 case (Nil, _, _) => out.reverse ::: st |
|
45 case (num::in, st, out) if (num.forall(_.isDigit)) => |
|
46 syard(in, st, num :: out) |
|
47 case (op1::in, op2::st, out) if (is_op(op1) && is_op(op2) && prec(op1, op2)) => |
|
48 syard(op1::in, st, op2 :: out) |
|
49 case (op1::in, st, out) if (is_op(op1)) => syard(in, op1::st, out) |
|
50 case ("("::in, st, out) => syard(in, "("::st, out) |
|
51 case (")"::in, op2::st, out) => |
|
52 if (op2 == "(") syard(in, st, out) else syard(")"::in, st, op2 :: out) |
|
53 case (in, st, out) => { |
|
54 println(s"in: ${in} st: ${st} out: ${out.reverse}") |
|
55 Nil |
|
56 } |
|
57 } |
|
58 |
|
59 |
|
60 // test cases |
|
61 //syard(split("3 + 4 * ( 2 - 1 )")) // 3 4 2 1 - * + |
|
62 //syard(split("10 + 12 * 33")) // 10 12 33 * + |
|
63 //syard(split("( 5 + 7 ) * 2")) // 5 7 + 2 * |
|
64 //syard(split("5 + 7 / 2")) // 5 7 2 / + |
|
65 //syard(split("5 * 7 / 2")) // 5 7 * 2 / |
|
66 //syard(split("9 + 24 / ( 7 - 3 )")) // 9 24 7 3 - / + |
|
67 |
|
68 //syard(split("3 + 4 + 5")) // 3 4 + 5 + |
|
69 //syard(split("( ( 3 + 4 ) + 5 )")) // 3 4 + 5 + |
|
70 //syard(split("( 3 + ( 4 + 5 ) )")) // 3 4 5 + + |
|
71 //syard(split("( ( ( 3 ) ) + ( ( 4 + ( 5 ) ) ) )")) // 3 4 5 + + |
|
72 |
|
73 // (7) Implement a compute function that evaluates an input list |
|
74 // in postfix notation. This function takes a list of tokens |
|
75 // and a stack as argumenta. The function should produce the |
|
76 // result as an integer using the stack. You can assume |
|
77 // this function will be only called with proper postfix |
|
78 // expressions. |
|
79 |
|
80 def op_comp(s: String, n1: Int, n2: Int) = s match { |
|
81 case "+" => n2 + n1 |
|
82 case "-" => n2 - n1 |
|
83 case "*" => n2 * n1 |
|
84 case "/" => n2 / n1 |
|
85 } |
|
86 |
|
87 def compute(toks: Toks, st: List[Int] = Nil) : Int = (toks, st) match { |
|
88 case (Nil, st) => st.head |
|
89 case (op::in, n1::n2::st) if (is_op(op)) => compute(in, op_comp(op, n1, n2)::st) |
|
90 case (num::in, st) => compute(in, num.toInt::st) |
|
91 } |
|
92 |
|
93 // test cases |
|
94 // compute(syard(split("3 + 4 * ( 2 - 1 )"))) // 7 |
|
95 // compute(syard(split("10 + 12 * 33"))) // 406 |
|
96 // compute(syard(split("( 5 + 7 ) * 2"))) // 24 |
|
97 // compute(syard(split("5 + 7 / 2"))) // 8 |
|
98 // compute(syard(split("5 * 7 / 2"))) // 17 |
|
99 // compute(syard(split("9 + 24 / ( 7 - 3 )"))) // 15 |
|
100 |
|
101 } |
|
102 |
|
103 |
|