marking1/drumb.scala
changeset 486 9c03b5e89a2a
parent 485 19b75e899d37
child 487 efad9725dfd8
equal deleted inserted replaced
485:19b75e899d37 486:9c03b5e89a2a
     1 // Main Part about a really dumb investment strategy
       
     2 //======================================================
       
     3 
       
     4 object CW6b {
       
     5 
       
     6 
       
     7 //two test portfolios
       
     8 
       
     9 val blchip_portfolio = List("GOOG", "AAPL", "MSFT", "IBM", "FB", "AMZN", "BIDU")
       
    10 val rstate_portfolio = List("PLD", "PSA", "AMT", "AIV", "AVB", "BXP", "CCI", 
       
    11                             "DLR", "EQIX", "EQR", "ESS", "EXR", "FRT", "HCP") 
       
    12 
       
    13 import io.Source
       
    14 import scala.util._
       
    15 
       
    16 // (1) The function below takes a stock symbol and a year as arguments.
       
    17 //     It should read the corresponding CSV-file and reads the January 
       
    18 //     data from the given year. The data should be collected in a list of
       
    19 //     strings for each line in the CSV-file.
       
    20 
       
    21 def get_january_data(symbol: String, year: Int) : List[String] = 
       
    22   Source.fromFile(symbol ++ ".csv")("ISO-8859-1").getLines.toList.filter(_.startsWith(year.toString))
       
    23 
       
    24 
       
    25 //test cases
       
    26 //blchip_portfolio.map(get_january_data(_, 2018))
       
    27 //rstate_portfolio.map(get_january_data(_, 2018))
       
    28 
       
    29 //get_january_data("GOOG", 1980)
       
    30 //get_january_data("GOOG", 2010)
       
    31 //get_january_data("FB", 2014)
       
    32 
       
    33 //get_january_data("PLD", 1980)
       
    34 //get_january_data("EQIX", 2010)
       
    35 //get_january_data("ESS", 2014)
       
    36 
       
    37 
       
    38 // (2) From the output of the get_january_data function, the next function 
       
    39 //     should extract the first line (if it exists) and the corresponding
       
    40 //     first trading price in that year with type Option[Double]. If no line 
       
    41 //     is generated by get_january_data then the result is None; Some if 
       
    42 //     there is a price.
       
    43 
       
    44 def get_first_price(symbol: String, year: Int) : Option[Double] = {
       
    45   val data = Try(Some(get_january_data(symbol, year).head)) getOrElse None 
       
    46   data.map(_.split(",").toList(1).toDouble)
       
    47 }
       
    48 
       
    49 //test cases
       
    50 //get_first_price("GOOG", 1980)
       
    51 //get_first_price("GOOG", 2010)
       
    52 //get_first_price("FB", 2014)
       
    53 
       
    54 /*
       
    55 for (i <- 1978 to 2018) {
       
    56   println(blchip_portfolio.map(get_first_price(_, i)))
       
    57 }
       
    58 
       
    59 for (i <- 1978 to 2018) {
       
    60   println(rstate_portfolio.map(get_first_price(_, i)))
       
    61 }
       
    62 */ 
       
    63 
       
    64 
       
    65 // (3) Complete the function below that obtains all first prices
       
    66 //     for the stock symbols from a portfolio (list of strings) and 
       
    67 //     for the given range of years. The inner lists are for the
       
    68 //     stock symbols and the outer list for the years.
       
    69 
       
    70 def get_prices(portfolio: List[String], years: Range): List[List[Option[Double]]] = 
       
    71   for (year <- years.toList) yield
       
    72     for (symbol <- portfolio) yield get_first_price(symbol, year)
       
    73 
       
    74 
       
    75 //test cases
       
    76 
       
    77 //println("Task 3 data from Google and Apple in 2010 to 2012")
       
    78 //val goog_aapl_prices = get_prices(List("GOOG", "AAPL"), 2010 to 2012)
       
    79 //println(goog_aapl_prices.toString ++ "\n")
       
    80 
       
    81 //val p_fb = get_prices(List("FB"), 2012 to 2014)
       
    82 //val tt = get_prices(List("BIDU"), 2004 to 2008)
       
    83 
       
    84 
       
    85 // (4) The function below calculates the change factor (delta) between
       
    86 //     a price in year n and a price in year n + 1. 
       
    87 
       
    88 def get_delta(price_old: Option[Double], price_new: Option[Double]) : Option[Double] = {
       
    89   (price_old, price_new) match {
       
    90     case (Some(x), Some(y)) => Some((y - x) / x)
       
    91     case _ => None
       
    92   }
       
    93 }
       
    94 
       
    95 
       
    96 // (5) The next function calculates all change factors for all prices (from a 
       
    97 //     portfolio). The input to this function are the nested lists created by 
       
    98 //     get_prices above.
       
    99 
       
   100 def get_deltas(data: List[List[Option[Double]]]):  List[List[Option[Double]]] =
       
   101   for (i <- (0 until (data.length - 1)).toList) yield 
       
   102     for (j <- (0 until (data(0).length)).toList) yield get_delta(data(i)(j), data(i + 1)(j))
       
   103 
       
   104 
       
   105 
       
   106 // test case using the prices calculated above
       
   107 
       
   108 //println("Task 5 change prices from Google and Apple in 2010 and 2011")
       
   109 //val goog_aapl_deltas = get_deltas(goog_aapl_prices)
       
   110 //println(goog_aapl_deltas.toString ++ "\n")
       
   111 
       
   112 //val ttd = get_deltas(tt)
       
   113 
       
   114 
       
   115 // (6) Write a function that given change factors, a starting balance and an index,
       
   116 //     calculates the yearly yield, i.e. new balance, according to our dumb investment 
       
   117 //     strategy. Index points to a year in the data list.
       
   118 
       
   119 def yearly_yield(data: List[List[Option[Double]]], balance: Long, index: Int): Long = {
       
   120   val somes = data(index).flatten
       
   121   val somes_length = somes.length
       
   122   if (somes_length == 0) balance
       
   123   else {
       
   124     val portion: Double = balance.toDouble / somes_length.toDouble
       
   125     balance + (for (x <- somes) yield (x * portion)).sum.toLong
       
   126   }
       
   127 }
       
   128 
       
   129 // test case using the deltas calculated above
       
   130 //println("Task 6 yield from Google and Apple in 2010 with  balance 100")
       
   131 
       
   132 //val d0 = goog_aapl_deltas(0)(0)
       
   133 //val d1 = goog_aapl_deltas(0)(1)
       
   134 //println(s"50 * ${d0.get} + 50 * ${d1.get} = ${50.toDouble * d0.get + 50.toDouble * d1.get}")
       
   135 
       
   136 
       
   137 //val goog_aapl_yield = yearly_yield(goog_aapl_deltas, 100, 0)
       
   138 //println("Rounded yield: " ++ goog_aapl_yield.toString ++ "\n")
       
   139 
       
   140 
       
   141 //yearly_yield(get_prices(rstate_portfolio, 2016 to 2018), 100, 2) 
       
   142 //get_prices(rstate_portfolio, 2016 to 2018)(2).flatten.sum
       
   143 
       
   144 
       
   145 // (7) Write a function compound_yield that calculates the overall balance for a 
       
   146 //     range of years where in each year the yearly profit is compounded to the new 
       
   147 //     balances and then re-invested into our portfolio. For this use the function and 
       
   148 //     results generated under (6). The function investment calls compound_yield
       
   149 //     with the appropriate deltas and the first index.
       
   150 
       
   151 
       
   152 def compound_yield(data: List[List[Option[Double]]], balance: Long, index: Int): Long = {
       
   153   if (index >= data.length) balance else {
       
   154     val new_balance = yearly_yield(data, balance, index)
       
   155     compound_yield(data, new_balance, index + 1)
       
   156   }
       
   157 }
       
   158 
       
   159 def investment(portfolio: List[String], years: Range, start_balance: Long): Long = {
       
   160   compound_yield(get_deltas(get_prices(portfolio, years)), start_balance, 0)
       
   161 }
       
   162 
       
   163 
       
   164 
       
   165 //test cases for the two portfolios given above
       
   166 
       
   167 //println("Real data: " + investment(rstate_portfolio, 1978 to 2019, 100))
       
   168 //println("Blue data: " + investment(blchip_portfolio, 1978 to 2019, 100))
       
   169 
       
   170 }
       
   171 
       
   172 
       
   173