progs/knight3.scala
changeset 50 9891c9fac37e
parent 4 f31c22f4f104
child 53 9f8751912560
equal deleted inserted replaced
49:fdc2c6fb7a24 50:9891c9fac37e
     1 import scala.util._
     1 // Part 3 about finding a single tour using the Warnsdorf Rule
       
     2 //=============================================================
     2 
     3 
     3 def print_board(n: Int)(steps: List[(Int, Int)]): Unit = {
     4 
     4   for (i <- 0 until n) {
     5 type Pos = (Int, Int)
     5     for (j <- 0 until n) {
     6 type Path = List[Pos]
     6       print(f"${steps.indexOf((i, j))}%3.0f ")
     7 
       
     8 def print_board(dim: Int, path: Path): Unit = {
       
     9   println
       
    10   for (i <- 0 until dim) {
       
    11     for (j <- 0 until dim) {
       
    12       print(f"${path.reverse.indexOf((i, j))}%3.0f ")
     7     }
    13     }
     8     println
    14     println
     9   } 
    15   } 
    10   //readLine()
       
    11   System.exit(0)
       
    12 }
    16 }
    13 
    17 
    14 def add_pair(x: (Int, Int))(y: (Int, Int)) = 
    18 def add_pair(x: Pos)(y: Pos): Pos = 
    15   (x._1 + y._1, x._2 + y._2)
    19   (x._1 + y._1, x._2 + y._2)
    16 
    20 
    17 def is_legal(n: Int)(x: (Int, Int)) = 
    21 def is_legal(dim: Int, path: Path)(x: Pos): Boolean = 
    18   0 <= x._1 && 0 <= x._2 && x._1 < n && x._2 < n
    22   0 <= x._1 && 0 <= x._2 && x._1 < dim && x._2 < dim && !path.contains(x)
    19 
    23 
    20 def moves(n: Int)(x: (Int, Int)): List[(Int, Int)] = {
    24 def moves(x: Pos): List[Pos] = 
    21   List((1, 2),(2, 1),(2, -1),(1, -2),
    25   List(( 1,  2),( 2,  1),( 2, -1),( 1, -2),
    22        (-1, -2),(-2, -1),(-2, 1),(-1, 2)).map(add_pair(x)).filter(is_legal(n))
    26        (-1, -2),(-2, -1),(-2,  1),(-1,  2)).map(add_pair(x))
       
    27 
       
    28 def legal_moves(dim: Int, path: Path, x: Pos): List[Pos] = 
       
    29   moves(x).filter(is_legal(dim, path))
       
    30 
       
    31 def ordered_moves(dim: Int, path: Path, x: Pos): List[Pos] = 
       
    32   legal_moves(dim, path, x).sortBy((x) => legal_moves(dim, path, x).length)
       
    33 
       
    34 
       
    35 def first(xs: List[Pos], f: Pos => Option[Path]): Option[Path] = xs match {
       
    36   case Nil => None
       
    37   case x::xs => {
       
    38     val result = f(x)
       
    39     if (result.isDefined) result else first(xs, f)
       
    40   }
    23 }
    41 }
    24 
    42 
    25 def ordered_moves(n: Int)(steps: List[(Int, Int)])(x : (Int, Int)): List[(Int, Int)] = 
       
    26   moves(n)(x).sortBy((x: (Int, Int)) => moves(n)(x).filterNot(steps.contains(_)).length)
       
    27 
    43 
    28 moves(8)(1,3)
    44 def first_closed_tour_heuristics(dim: Int, path: Path): Option[Path] = {
    29 ordered_moves(8)(Nil)(1,3)
    45   if (path.length == dim * dim && moves(path.head).contains(path.last)) Some(path)
    30 ordered_moves(8)(List((2, 4), (2, 6)))(1,3)
    46   else
    31 
    47     first(ordered_moves(dim, path, path.head), (x: Pos) => first_closed_tour_heuristics(dim, x::path))
    32 // non-circle tour parallel
       
    33 def tour(n: Int)(steps: List[(Int, Int)]): Unit = {
       
    34   if (steps.length ==  n * n && moves(n)(steps.head).contains(steps.last))
       
    35     print_board(n)(steps)
       
    36   else 
       
    37     for (x <- moves(n)(steps.head).par; if (!steps.contains(x))) tour(n)(x :: steps)
       
    38 }
    48 }
    39 
    49 
    40 val n = 7
    50 for (dim <- 1 to 6) {
    41 println(s"circle tour parallel: n = $n")
    51   val t = first_closed_tour_heuristics(dim, List((dim / 2, dim / 2)))
       
    52   println(s"${dim} x ${dim} closed: " + (if (t == None) "" else { print_board(dim, t.get) ; "" }))
       
    53 }
    42 
    54 
    43 val starts = for (i <- 0 until n; j <- 0 until n) yield (i, j)
       
    44 
    55 
    45 starts.par.foreach((x:(Int, Int)) => tour(n)(List(x))) 
    56 def first_tour_heuristics(dim: Int, path: Path): Option[Path] = {
       
    57   if (path.length == dim * dim) Some(path)
       
    58   else
       
    59     first(ordered_moves(dim, path, path.head), (x: Pos) => first_tour_heuristics(dim, x::path))
       
    60 }
       
    61 
       
    62 for (dim <- 1 to 50) {
       
    63   val t = first_tour_heuristics(dim, List((dim / 2, dim / 2)))
       
    64   println(s"${dim} x ${dim}: " + (if (t == None) "" else { print_board(dim, t.get) ; "" }))
       
    65 }