1 // Part 2 about finding a single tour for a board |
|
2 //================================================ |
|
3 |
|
4 object CW7b { |
|
5 |
|
6 type Pos = (Int, Int) // a position on a chessboard |
|
7 type Path = List[Pos] // a path...a list of positions |
|
8 |
|
9 def print_board(dim: Int, path: Path) : Unit = { |
|
10 println |
|
11 for (i <- 0 until dim) { |
|
12 for (j <- 0 until dim) { |
|
13 print(f"${path.reverse.indexOf((i, j))}%3.0f ") |
|
14 } |
|
15 println |
|
16 } |
|
17 } |
|
18 |
|
19 def add_pair(x: Pos)(y: Pos) : Pos = |
|
20 (x._1 + y._1, x._2 + y._2) |
|
21 |
|
22 def is_legal(dim: Int, path: Path)(x: Pos) : Boolean = |
|
23 0 <= x._1 && 0 <= x._2 && x._1 < dim && x._2 < dim && !path.contains(x) |
|
24 |
|
25 def moves(x: Pos) : List[Pos] = |
|
26 List(( 1, 2),( 2, 1),( 2, -1),( 1, -2), |
|
27 (-1, -2),(-2, -1),(-2, 1),(-1, 2)).map(add_pair(x)) |
|
28 |
|
29 def legal_moves(dim: Int, path: Path, x: Pos) : List[Pos] = |
|
30 moves(x).filter(is_legal(dim, path)) |
|
31 |
|
32 |
|
33 def first(xs: List[Pos], f: Pos => Option[Path]) : Option[Path] = xs match { |
|
34 case Nil => None |
|
35 case x::xs => { |
|
36 val result = f(x) |
|
37 if (result.isDefined) result else first(xs, f) |
|
38 } |
|
39 } |
|
40 |
|
41 //first(List((1, 0),(2, 0),(3, 0),(4, 0)), (x => if (x._1 > 3) Some(List(x)) else None)) |
|
42 //first(List((1, 0),(2, 0),(3, 0)), (x => if (x._1 > 3) Some(List(x)) else None)) |
|
43 |
|
44 def first_tour(dim: Int, path: Path) : Option[Path] = { |
|
45 if (path.length == dim * dim) Some(path) |
|
46 else |
|
47 first(legal_moves(dim, path, path.head), (x: Pos) => first_tour(dim, x::path)) |
|
48 } |
|
49 |
|
50 /* |
|
51 val ts1 = first_tour(8, List((0, 0))).get |
|
52 assert(correct_urban(8)(ts1) == true) |
|
53 |
|
54 val ts2 = first_tour(4, List((0, 0))) |
|
55 assert(ts2 == None) |
|
56 |
|
57 print_board(8, first_tour(8, List((0, 0))).get) |
|
58 */ |
|
59 |
|
60 } |
|
61 |
|