4 //    recursively calculate the number of steps needed   | 
     4 //    recursively calculate the number of steps needed   | 
     5 //    until the collatz series reaches the number 1.  | 
     5 //    until the collatz series reaches the number 1.  | 
     6 //    If needed, you can use an auxiliary function that  | 
     6 //    If needed, you can use an auxiliary function that  | 
     7 //    performs the recursion. The function should expect  | 
     7 //    performs the recursion. The function should expect  | 
     8 //    arguments in the range of 1 to 1 Million.  | 
     8 //    arguments in the range of 1 to 1 Million.  | 
         | 
     9 def stepsCounter(n: Long, s: Long) : Long = n match{ | 
         | 
    10     case 1 => s  | 
         | 
    11     case n if(n%2==0) => stepsCounter(n/2,s+1)  | 
         | 
    12     case _ => stepsCounter(3*n+1, s+1)  | 
         | 
    13 }  | 
         | 
    14   | 
         | 
    15 def collatz(n: Long) : Long = n match { | 
         | 
    16     case n if(n>0) => stepsCounter(n,0)  | 
         | 
    17     case n if(n<=0) => stepsCounter(1,0)  | 
         | 
    18 }  | 
     9   | 
    19   | 
    10   | 
    20   | 
    11 // def collatz(n: Long) : Long = { | 
         | 
    12 //     if (n == 1) 1 //else  | 
         | 
    13 //     // if (n % 2 == 0) { | 
         | 
    14 //     //     collatz(n/2)  | 
         | 
    15 //     //     steps + 1  | 
         | 
    16 //     // } //else  | 
         | 
    17 //     // if (n % 2 != 0) { | 
         | 
    18 //     //     collatz((3 * n) + 1)  | 
         | 
    19 //     //     steps + 1  | 
         | 
    20 //     // }  | 
         | 
    21 // }  | 
         | 
    22   | 
         | 
    23 // val steps: Long = 1  | 
         | 
    24 // val lst = List()  | 
         | 
    25 // def collatz(n: Long) : Long = { | 
         | 
    26 //     if  (n == 1) { steps + 1 } | 
         | 
    27 //     else if (n % 2 == 0) {  | 
         | 
    28 //         collatz(n/2);  | 
         | 
    29 //     }  | 
         | 
    30 //     else {  | 
         | 
    31 //         collatz((3 * n) + 1);  | 
         | 
    32 //     }  | 
         | 
    33 //     steps + 1  | 
         | 
    34 // }   | 
         | 
    35 // collatz(6)  | 
         | 
    36   | 
         | 
    37 def collatz(n: Long, list: List[Long] = List()): Long = { | 
         | 
    38     if (n == 1) { | 
         | 
    39             n :: list  | 
         | 
    40             list.size.toLong  | 
         | 
    41     }  | 
         | 
    42     else if (n % 2 == 0) { | 
         | 
    43         collatz(n / 2, n :: list)  | 
         | 
    44     }  | 
         | 
    45     else { | 
         | 
    46         collatz((3 * n) + 1, n :: list)  | 
         | 
    47     }  | 
         | 
    48 }     | 
         | 
    49   | 
         | 
    50 val test = collatz(6)  | 
         | 
    51   | 
    21   | 
    52 //(2) Complete the collatz_max function below. It should  | 
    22 //(2) Complete the collatz_max function below. It should  | 
    53 //    calculate how many steps are needed for each number   | 
    23 //    calculate how many steps are needed for each number   | 
    54 //    from 1 up to a bound and then calculate the maximum number of  | 
    24 //    from 1 up to a bound and then calculate the maximum number of  | 
    55 //    steps and the corresponding number that needs that many   | 
    25 //    steps and the corresponding number that needs that many   | 
    56 //    steps. Again, you should expect bounds in the range of 1  | 
    26 //    steps. Again, you should expect bounds in the range of 1  | 
    57 //    up to 1 Million. The first component of the pair is  | 
    27 //    up to 1 Million. The first component of the pair is  | 
    58 //    the maximum number of steps and the second is the   | 
    28 //    the maximum number of steps and the second is the   | 
    59 //    corresponding number.  | 
    29 //    corresponding number.  | 
    60   | 
    30   | 
    61 //def collatz_max(bnd: Long) : (Long, Long) = ...  | 
    31 def collatz_max(bnd: Long) : (Long, Long) =  { | 
    62 def collatz_max(bnd: Long) : (Long, Long) = { | 
    32     val allCollatz = for(i<-1L until bnd) yield collatz(i)  | 
    63     val stepsTable = for (n <- (1 to bnd.toInt).toList) yield (collatz(n), n.toLong)  | 
    33     val pair = (allCollatz.max, (allCollatz.indexOf(allCollatz.max) +1).toLong)  | 
    64     //println(stepsTable)  | 
    34     pair  | 
    65     stepsTable.max  | 
         | 
    66 }  | 
    35 }  | 
    67   | 
    36   | 
    68   | 
         | 
    69 }  | 
    37 }  | 
    70   | 
         |