|
1 // Part 2 about finding a single tour for a board |
|
2 //================================================ |
|
3 |
|
4 |
|
5 type Pos = (Int, Int) |
|
6 type Path = List[Pos] |
|
7 |
|
8 def print_board(dim: Int, path: Path): Unit = { |
|
9 println |
|
10 for (i <- 0 until dim) { |
|
11 for (j <- 0 until dim) { |
|
12 print(f"${path.reverse.indexOf((i, j))}%3.0f ") |
|
13 } |
|
14 println |
|
15 } |
|
16 } |
|
17 |
|
18 def add_pair(x: Pos)(y: Pos): Pos = |
|
19 (x._1 + y._1, x._2 + y._2) |
|
20 |
|
21 def is_legal(dim: Int, path: Path)(x: Pos): Boolean = |
|
22 0 <= x._1 && 0 <= x._2 && x._1 < dim && x._2 < dim && !path.contains(x) |
|
23 |
|
24 def moves(x: Pos): List[Pos] = |
|
25 List(( 1, 2),( 2, 1),( 2, -1),( 1, -2), |
|
26 (-1, -2),(-2, -1),(-2, 1),(-1, 2)).map(add_pair(x)) |
|
27 |
|
28 def legal_moves(dim: Int, path: Path, x: Pos): List[Pos] = |
|
29 moves(x).filter(is_legal(dim, path)) |
|
30 |
|
31 |
|
32 def first(xs: List[Pos], f: Pos => Option[Path]): Option[Path] = xs match { |
|
33 case Nil => None |
|
34 case x::xs => { |
|
35 val result = f(x) |
|
36 if (result.isDefined) result else first(xs, f) |
|
37 } |
|
38 } |
|
39 |
|
40 |
|
41 def first_tour(dim: Int, path: Path): Option[Path] = { |
|
42 if (path.length == dim * dim) Some(path) |
|
43 else |
|
44 first(legal_moves(dim, path, path.head), (x: Pos) => first_tour(dim, x::path)) |
|
45 } |
|
46 |
|
47 for (dim <- 1 to 8) { |
|
48 val t = first_tour(dim, List((0, 0))) |
|
49 println(s"${dim} x ${dim} " + (if (t == None) "" else { print_board(dim, t.get) ; "" })) |
|
50 } |
|
51 |