1 // Preliminary Part 1 finding and counting Knight's tours  | 
     1 // Preliminary Part about finding Knight's tours  | 
     2 //========================================================  | 
     2 //===============================================  | 
     3   | 
     3   | 
     4 object CW8a {   | 
     4   | 
         | 
     5 object CW8a { | 
         | 
     6   | 
         | 
     7 // If you need any auxiliary function, feel free to   | 
         | 
     8 // implement it, but do not make any changes to the  | 
         | 
     9 // templates below. Also have a look whether the functions  | 
         | 
    10 // at the end are of any help.  | 
         | 
    11   | 
         | 
    12   | 
     5   | 
    13   | 
     6 type Pos = (Int, Int)    // a position on a chessboard   | 
    14 type Pos = (Int, Int)    // a position on a chessboard   | 
     7 type Path = List[Pos]    // a path...a list of positions  | 
    15 type Path = List[Pos]    // a path...a list of positions  | 
     8   | 
    16   | 
         | 
    17 //(1) Complete the function that tests whether the position x  | 
         | 
    18 //    is inside the board and not yet element in the path.  | 
     9   | 
    19   | 
    10 // for measuring time in the JAR  | 
    20 def is_legal(dim: Int, path: Path, x: Pos) : Boolean = {  | 
         | 
    21   if ((!(path.contains(x))) && (x._1 >= 0) && (x._2 >= 0) && (x._1 < dim) && (x._2 < dim))  | 
         | 
    22     true  | 
         | 
    23   else false  | 
         | 
    24 }  | 
         | 
    25   | 
         | 
    26 //(2) Complete the function that calculates for a position x  | 
         | 
    27 //    all legal onward moves that are not already in the path.   | 
         | 
    28 //    The moves should be ordered in a "clockwise" manner.  | 
         | 
    29    | 
         | 
    30   | 
         | 
    31 def legal_moves(dim: Int, path: Path, x: Pos) : List[Pos] = {//List[Pos] | 
         | 
    32   val changes = List((1,2),(2,1),(2,-1),(1,-2),(-1,-2),(-2,-1),(-2,1),(-1,2))  | 
         | 
    33   val returnList = (for ((y,z) <- changes) yield(  | 
         | 
    34     //println(y,z)-2,-1  | 
         | 
    35     if ((is_legal(dim,path,((x._1 + y) , (x._2 + z)))) == true)  | 
         | 
    36       Some(x._1 + y , x._2 + z)  | 
         | 
    37     else  | 
         | 
    38       None  | 
         | 
    39   ))  | 
         | 
    40   returnList.flatten  | 
         | 
    41 }  | 
         | 
    42   | 
         | 
    43   | 
         | 
    44 //some testcases  | 
         | 
    45 //  | 
         | 
    46 //assert(legal_moves(8, Nil, (2,2)) ==   | 
         | 
    47   //List((3,4), (4,3), (4,1), (3,0), (1,0), (0,1), (0,3), (1,4)))  | 
         | 
    48 //assert(legal_moves(8, Nil, (7,7)) == List((6,5), (5,6)))  | 
         | 
    49 //assert(legal_moves(8, List((4,1), (1,0)), (2,2)) ==   | 
         | 
    50 //  List((3,4), (4,3), (3,0), (0,1), (0,3), (1,4)))  | 
         | 
    51 //assert(legal_moves(8, List((6,6)), (7,7)) == List((6,5), (5,6)))  | 
         | 
    52   | 
         | 
    53   | 
         | 
    54 //(3) Complete the two recursive functions below.   | 
         | 
    55 //    They exhaustively search for knight's tours starting from the   | 
         | 
    56 //    given path. The first function counts all possible tours,   | 
         | 
    57 //    and the second collects all tours in a list of paths.  | 
         | 
    58   | 
         | 
    59 def count_tours(dim: Int, path: Path) : Int = (dim,path) match {//Int | 
         | 
    60   case (_, Nil) => 0  | 
         | 
    61   case (0, path) => 0  | 
         | 
    62   case (dim, path) => { if (legal_moves(dim,path, path.head).size == 0)  | 
         | 
    63 				if(path.size < dim*dim)   | 
         | 
    64 					0   | 
         | 
    65 				else   | 
         | 
    66 					1  | 
         | 
    67 			else (for (j <- legal_moves(dim,path, path.head)) yield count_tours(dim,j::path)).sum  | 
         | 
    68 			}  | 
         | 
    69 }  | 
         | 
    70   | 
         | 
    71 def enum_tours(dim: Int, path: Path) : List[Path] = (dim,path) match { | 
         | 
    72   case (_, Nil) => Nil  | 
         | 
    73   case (0, path) => Nil  | 
         | 
    74   case (dim, path) =>	{ if (legal_moves(dim,path, path.head).size == 0)  | 
         | 
    75 				if(path.size < dim*dim)   | 
         | 
    76 					Nil  | 
         | 
    77 				else   | 
         | 
    78 					List(path)  | 
         | 
    79 			else (for (j <- legal_moves(dim,path, path.head)) yield enum_tours(dim,j::path)).flatten  | 
         | 
    80 			}  | 
         | 
    81 			  | 
         | 
    82 }  | 
         | 
    83   | 
         | 
    84   | 
         | 
    85 //(4) Implement a first-function that finds the first   | 
         | 
    86 //    element, say x, in the list xs where f is not None.   | 
         | 
    87 //    In that case Return f(x), otherwise None. If possible,  | 
         | 
    88 //    calculate f(x) only once.  | 
         | 
    89   | 
         | 
    90 //def first(xs: List[Pos], f: Pos => Option[Path]) : Option[Path] = ...  | 
         | 
    91   | 
         | 
    92   | 
         | 
    93 // testcases  | 
         | 
    94 //  | 
         | 
    95 //def foo(x: (Int, Int)) = if (x._1 > 3) Some(List(x)) else None  | 
         | 
    96 //  | 
         | 
    97 //first(List((1, 0),(2, 0),(3, 0),(4, 0)), foo)   // Some(List((4,0)))  | 
         | 
    98 //first(List((1, 0),(2, 0),(3, 0)), foo)          // None  | 
         | 
    99   | 
         | 
   100   | 
         | 
   101 //(5) Implement a function that uses the first-function from (5) for  | 
         | 
   102 //    trying out onward moves, and searches recursively for a  | 
         | 
   103 //    knight tour on a dim * dim-board.  | 
         | 
   104   | 
         | 
   105   | 
         | 
   106 //def first_tour(dim: Int, path: Path) : Option[Path] = ...  | 
         | 
   107    | 
         | 
   108   | 
         | 
   109   | 
         | 
   110   | 
         | 
   111   | 
         | 
   112   | 
         | 
   113 /* Helper functions  | 
         | 
   114   | 
         | 
   115   | 
         | 
   116 // for measuring time  | 
    11 def time_needed[T](code: => T) : T = { | 
   117 def time_needed[T](code: => T) : T = { | 
    12   val start = System.nanoTime()  | 
   118   val start = System.nanoTime()  | 
    13   val result = code  | 
   119   val result = code  | 
    14   val end = System.nanoTime()  | 
   120   val end = System.nanoTime()  | 
    15   println(f"Time needed: ${(end - start) / 1.0e9}%3.3f secs.") | 
   121   println(f"Time needed: ${(end - start) / 1.0e9}%3.3f secs.") | 
    16   result  | 
   122   result  | 
    17 }  | 
   123 }  | 
         | 
   124   | 
         | 
   125 // can be called for example with  | 
         | 
   126 //     time_needed(count_tours(dim, List((0, 0))))  | 
         | 
   127 // in order to print out the time that is needed for   | 
         | 
   128 // running count_tours  | 
         | 
   129   | 
         | 
   130   | 
         | 
   131   | 
    18   | 
   132   | 
    19 // for printing a board  | 
   133 // for printing a board  | 
    20 def print_board(dim: Int, path: Path): Unit = { | 
   134 def print_board(dim: Int, path: Path): Unit = { | 
    21   println  | 
   135   println  | 
    22   for (i <- 0 until dim) { | 
   136   for (i <- 0 until dim) { | 
    25     }  | 
   139     }  | 
    26     println  | 
   140     println  | 
    27   }   | 
   141   }   | 
    28 }  | 
   142 }  | 
    29   | 
   143   | 
    30 def is_legal(dim: Int, path: Path, x: Pos): Boolean =   | 
         | 
    31   0 <= x._1 && 0 <= x._2 && x._1 < dim && x._2 < dim && !path.contains(x)  | 
         | 
    32   | 
   144   | 
    33 // testcases  | 
         | 
    34 //assert(is_legal(8, Nil, (3, 4)) == true)  | 
         | 
    35 //assert(is_legal(8, List((4, 1), (1, 0)), (4, 1)) == false)  | 
         | 
    36 //assert(is_legal(2, Nil, (0, 0)) == true)  | 
         | 
    37   | 
         | 
    38   | 
         | 
    39 def add_pair(x: Pos, y: Pos): Pos =   | 
         | 
    40   (x._1 + y._1, x._2 + y._2)  | 
         | 
    41   | 
         | 
    42 def moves(x: Pos): List[Pos] =   | 
         | 
    43   List(( 1,  2),( 2,  1),( 2, -1),( 1, -2),  | 
         | 
    44        (-1, -2),(-2, -1),(-2,  1),(-1,  2)).map(add_pair(x, _))  | 
         | 
    45   | 
         | 
    46 // 1 mark  | 
         | 
    47   | 
         | 
    48 def legal_moves(dim: Int, path: Path, x: Pos): List[Pos] =   | 
         | 
    49   moves(x).filter(is_legal(dim, path, _))  | 
         | 
    50   | 
         | 
    51 // testcases  | 
         | 
    52 //assert(legal_moves(8, Nil, (2,2)) ==   | 
         | 
    53 //  List((3,4), (4,3), (4,1), (3,0), (1,0), (0,1), (0,3), (1,4)))  | 
         | 
    54 //assert(legal_moves(8, Nil, (7,7)) == List((6,5), (5,6)))  | 
         | 
    55 //assert(legal_moves(8, List((4,1), (1,0)), (2,2)) ==   | 
         | 
    56 //  List((3,4), (4,3), (3,0), (0,1), (0,3), (1,4)))  | 
         | 
    57 //assert(legal_moves(8, List((6,6)), (7,7)) == List((6,5), (5,6)))  | 
         | 
    58 //assert(legal_moves(1, Nil, (0,0)) == List())  | 
         | 
    59 //assert(legal_moves(2, Nil, (0,0)) == List())  | 
         | 
    60 //assert(legal_moves(3, Nil, (0,0)) == List((1,2), (2,1)))  | 
         | 
    61   | 
         | 
    62 // 2 marks  | 
         | 
    63   | 
         | 
    64 def tcount_tours(dim: Int, path: Path): Int = { | 
         | 
    65   if (path.length == dim * dim) 1  | 
         | 
    66   else   | 
         | 
    67     (for (x <- legal_moves(dim, path, path.head)) yield tcount_tours(dim, x::path)).sum  | 
         | 
    68 }  | 
         | 
    69   | 
         | 
    70 def count_tours(dim: Int, path: Path) =  | 
         | 
    71   time_needed(tcount_tours(dim: Int, path: Path))  | 
         | 
    72   | 
         | 
    73   | 
         | 
    74 def tenum_tours(dim: Int, path: Path): List[Path] = { | 
         | 
    75   if (path.length == dim * dim) List(path)  | 
         | 
    76   else   | 
         | 
    77     (for (x <- legal_moves(dim, path, path.head)) yield tenum_tours(dim, x::path)).flatten  | 
         | 
    78 }  | 
         | 
    79   | 
         | 
    80 def enum_tours(dim: Int, path: Path) =  | 
         | 
    81   time_needed(tenum_tours(dim: Int, path: Path))  | 
         | 
    82   | 
         | 
    83 // test cases  | 
         | 
    84   | 
         | 
    85 /*  | 
         | 
    86 def count_all_tours(dim: Int) = { | 
         | 
    87   for (i <- (0 until dim).toList;   | 
         | 
    88        j <- (0 until dim).toList) yield count_tours(dim, List((i, j)))  | 
         | 
    89 }  | 
         | 
    90   | 
         | 
    91 def enum_all_tours(dim: Int): List[Path] = { | 
         | 
    92   (for (i <- (0 until dim).toList;   | 
         | 
    93         j <- (0 until dim).toList) yield enum_tours(dim, List((i, j)))).flatten  | 
         | 
    94 }  | 
         | 
    95   | 
         | 
    96   | 
         | 
    97 println("Number of tours starting from (0, 0)") | 
         | 
    98   | 
         | 
    99 for (dim <- 1 to 5) { | 
         | 
   100   println(s"${dim} x ${dim} " + time_needed(0, count_tours(dim, List((0, 0))))) | 
         | 
   101 }  | 
         | 
   102   | 
         | 
   103 println("Number of tours starting from all fields") | 
         | 
   104   | 
         | 
   105 for (dim <- 1 to 5) { | 
         | 
   106   println(s"${dim} x ${dim} " + time_needed(0, count_all_tours(dim))) | 
         | 
   107 }  | 
         | 
   108   | 
         | 
   109 for (dim <- 1 to 5) { | 
         | 
   110   val ts = enum_tours(dim, List((0, 0)))  | 
         | 
   111   println(s"${dim} x ${dim} ")    | 
         | 
   112   if (ts != Nil) { | 
         | 
   113     print_board(dim, ts.head)  | 
         | 
   114     println(ts.head)  | 
         | 
   115   }  | 
         | 
   116 }  | 
         | 
   117 */  | 
   145 */  | 
   118   | 
   146   | 
   119 // 1 mark  | 
         | 
   120   | 
         | 
   121 def first(xs: List[Pos], f: Pos => Option[Path]): Option[Path] = xs match { | 
         | 
   122   case Nil => None  | 
         | 
   123   case x::xs => { | 
         | 
   124     val result = f(x)  | 
         | 
   125     if (result.isDefined) result else first(xs, f)  | 
         | 
   126   }  | 
         | 
   127 }  | 
   147 }  | 
   128   | 
         | 
   129 // test cases  | 
         | 
   130 //def foo(x: (Int, Int)) = if (x._1 > 3) Some(List(x)) else None  | 
         | 
   131 //  | 
         | 
   132 //first(List((1, 0),(2, 0),(3, 0),(4, 0)), foo)  | 
         | 
   133 //first(List((1, 0),(2, 0),(3, 0)), foo)  | 
         | 
   134   | 
         | 
   135   | 
         | 
   136 // 1 mark  | 
         | 
   137   | 
         | 
   138 def tfirst_tour(dim: Int, path: Path): Option[Path] = { | 
         | 
   139   if (path.length == dim * dim) Some(path)  | 
         | 
   140   else  | 
         | 
   141     first(legal_moves(dim, path, path.head), (x:Pos) => tfirst_tour(dim, x::path))  | 
         | 
   142 }  | 
         | 
   143   | 
         | 
   144 def first_tour(dim: Int, path: Path) =   | 
         | 
   145   time_needed(tfirst_tour(dim: Int, path: Path))  | 
         | 
   146   | 
         | 
   147   | 
         | 
   148 /*  | 
         | 
   149 for (dim <- 1 to 8) { | 
         | 
   150   val t = first_tour(dim, List((0, 0)))  | 
         | 
   151   println(s"${dim} x ${dim} " + (if (t == None) "" else { print_board(dim, t.get) ; "" })) | 
         | 
   152 }  | 
         | 
   153 */  | 
         | 
   154   | 
         | 
   155 // 15 secs for 8 x 8  | 
         | 
   156 //val ts1 = time_needed(0,first_tour(8, List((0, 0))).get)  | 
         | 
   157   | 
         | 
   158 // no result for 4 x 4  | 
         | 
   159 //val ts2 = time_needed(0, first_tour(4, List((0, 0))))  | 
         | 
   160   | 
         | 
   161 // 0.3 secs for 6 x 6  | 
         | 
   162 //val ts3 = time_needed(0, first_tour(6, List((0, 0))))  | 
         | 
   163   | 
         | 
   164 // 15 secs for 8 x 8  | 
         | 
   165 //time_needed(0, print_board(8, first_tour(8, List((0, 0))).get))  | 
         | 
   166   | 
         | 
   167   | 
         | 
   168 }  | 
         | 
   169   | 
         | 
   170   | 
         |