| 
     1 // Part 1 about Regular Expression Matching  | 
         | 
     2 //==========================================  | 
         | 
     3   | 
         | 
     4 object CW8a { | 
         | 
     5   | 
         | 
     6 abstract class Rexp  | 
         | 
     7 case object ZERO extends Rexp  | 
         | 
     8 case object ONE extends Rexp  | 
         | 
     9 case class CHAR(c: Char) extends Rexp  | 
         | 
    10 case class ALT(r1: Rexp, r2: Rexp) extends Rexp   | 
         | 
    11 case class SEQ(r1: Rexp, r2: Rexp) extends Rexp   | 
         | 
    12 case class STAR(r: Rexp) extends Rexp   | 
         | 
    13   | 
         | 
    14 // some convenience for typing in regular expressions  | 
         | 
    15   | 
         | 
    16 import scala.language.implicitConversions      | 
         | 
    17 import scala.language.reflectiveCalls   | 
         | 
    18   | 
         | 
    19   | 
         | 
    20 def charlist2rexp(s: List[Char]): Rexp = s match { | 
         | 
    21   case Nil => ONE  | 
         | 
    22   case c::Nil => CHAR(c)  | 
         | 
    23   case c::s => SEQ(CHAR(c), charlist2rexp(s))  | 
         | 
    24 }  | 
         | 
    25 implicit def string2rexp(s: String): Rexp = charlist2rexp(s.toList)  | 
         | 
    26   | 
         | 
    27 implicit def RexpOps (r: Rexp) = new { | 
         | 
    28   def | (s: Rexp) = ALT(r, s)  | 
         | 
    29   def % = STAR(r)  | 
         | 
    30   def ~ (s: Rexp) = SEQ(r, s)  | 
         | 
    31 }  | 
         | 
    32   | 
         | 
    33 implicit def stringOps (s: String) = new { | 
         | 
    34   def | (r: Rexp) = ALT(s, r)  | 
         | 
    35   def | (r: String) = ALT(s, r)  | 
         | 
    36   def % = STAR(s)  | 
         | 
    37   def ~ (r: Rexp) = SEQ(s, r)  | 
         | 
    38   def ~ (r: String) = SEQ(s, r)  | 
         | 
    39 }  | 
         | 
    40   | 
         | 
    41 // (1a) Complete the function nullable according to  | 
         | 
    42 // the definition given in the coursework; this   | 
         | 
    43 // function checks whether a regular expression  | 
         | 
    44 // can match the empty string  | 
         | 
    45   | 
         | 
    46 def nullable (r: Rexp) : Boolean = r match { | 
         | 
    47   case ZERO => false  | 
         | 
    48   case ONE => true  | 
         | 
    49   case CHAR(_) => false  | 
         | 
    50   case ALT(r1, r2) => nullable(r1) || nullable(r2)  | 
         | 
    51   case SEQ(r1, r2) => nullable(r1) && nullable(r2)  | 
         | 
    52   case STAR(_) => true  | 
         | 
    53 }  | 
         | 
    54   | 
         | 
    55 // (1b) Complete the function der according to  | 
         | 
    56 // the definition given in the coursework; this  | 
         | 
    57 // function calculates the derivative of a   | 
         | 
    58 // regular expression w.r.t. a character  | 
         | 
    59   | 
         | 
    60 def der (c: Char, r: Rexp) : Rexp = r match { | 
         | 
    61   case ZERO => ZERO  | 
         | 
    62   case ONE => ZERO  | 
         | 
    63   case CHAR(d) => if (c == d) ONE else ZERO  | 
         | 
    64   case ALT(r1, r2) => ALT(der(c, r1), der(c, r2))  | 
         | 
    65   case SEQ(r1, r2) =>   | 
         | 
    66     if (nullable(r1)) ALT(SEQ(der(c, r1), r2), der(c, r2))  | 
         | 
    67     else SEQ(der(c, r1), r2)  | 
         | 
    68   case STAR(r1) => SEQ(der(c, r1), STAR(r1))  | 
         | 
    69 }  | 
         | 
    70   | 
         | 
    71 // (1c) Complete the function der according to  | 
         | 
    72 // the specification given in the coursework; this  | 
         | 
    73 // function simplifies a regular expression;  | 
         | 
    74 // however it does not simplify inside STAR-regular  | 
         | 
    75 // expressions  | 
         | 
    76   | 
         | 
    77 def simp(r: Rexp) : Rexp = r match { | 
         | 
    78   case ALT(r1, r2) => (simp(r1), simp(r2)) match { | 
         | 
    79     case (ZERO, r2s) => r2s  | 
         | 
    80     case (r1s, ZERO) => r1s  | 
         | 
    81     case (r1s, r2s) => if (r1s == r2s) r1s else ALT (r1s, r2s)  | 
         | 
    82   }  | 
         | 
    83   case SEQ(r1, r2) =>  (simp(r1), simp(r2)) match { | 
         | 
    84     case (ZERO, _) => ZERO  | 
         | 
    85     case (_, ZERO) => ZERO  | 
         | 
    86     case (ONE, r2s) => r2s  | 
         | 
    87     case (r1s, ONE) => r1s  | 
         | 
    88     case (r1s, r2s) => SEQ(r1s, r2s)  | 
         | 
    89   }  | 
         | 
    90   case r => r  | 
         | 
    91 }  | 
         | 
    92   | 
         | 
    93 // (1d) Complete the two functions below; the first   | 
         | 
    94 // calculates the derivative w.r.t. a string; the second  | 
         | 
    95 // is the regular expression matcher taking a regular  | 
         | 
    96 // expression and a string and checks whether the  | 
         | 
    97 // string matches the regular expression  | 
         | 
    98   | 
         | 
    99 def ders (s: List[Char], r: Rexp) : Rexp = s match { | 
         | 
   100   case Nil => r  | 
         | 
   101   case c::s => ders(s, simp(der(c, r)))  | 
         | 
   102 }  | 
         | 
   103   | 
         | 
   104 // main matcher function  | 
         | 
   105 def matcher(r: Rexp, s: String): Boolean = nullable(ders(s.toList, r))  | 
         | 
   106   | 
         | 
   107 // (1e) Complete the size function for regular  | 
         | 
   108 // expressions  according to the specification   | 
         | 
   109 // given in the coursework.  | 
         | 
   110   | 
         | 
   111 def size(r: Rexp): Int = r match { | 
         | 
   112   case ZERO => 1  | 
         | 
   113   case ONE => 1  | 
         | 
   114   case CHAR(_) => 1  | 
         | 
   115   case ALT(r1, r2) => 1 + size(r1) + size (r2)  | 
         | 
   116   case SEQ(r1, r2) => 1 + size(r1) + size (r2)  | 
         | 
   117   case STAR(r1) => 1 + size(r1)  | 
         | 
   118 }  | 
         | 
   119   | 
         | 
   120   | 
         | 
   121   | 
         | 
   122 // some testing data  | 
         | 
   123 /*  | 
         | 
   124 matcher(("a" ~ "b") ~ "c", "abc")  // => true | 
         | 
   125 matcher(("a" ~ "b") ~ "c", "ab")   // => false | 
         | 
   126   | 
         | 
   127 // the supposedly 'evil' regular expression (a*)* b  | 
         | 
   128 val EVIL = SEQ(STAR(STAR(CHAR('a'))), CHAR('b')) | 
         | 
   129   | 
         | 
   130 matcher(EVIL, "a" * 1000 ++ "b")   // => true  | 
         | 
   131 matcher(EVIL, "a" * 1000)          // => false  | 
         | 
   132   | 
         | 
   133 // size without simplifications  | 
         | 
   134 size(der('a', der('a', EVIL)))             // => 28 | 
         | 
   135 size(der('a', der('a', der('a', EVIL))))   // => 58 | 
         | 
   136   | 
         | 
   137 // size with simplification  | 
         | 
   138 size(simp(der('a', der('a', EVIL))))           // => 8 | 
         | 
   139 size(simp(der('a', der('a', der('a', EVIL))))) // => 8 | 
         | 
   140   | 
         | 
   141 // Java needs around 30 seconds for matching 28 a's with EVIL.   | 
         | 
   142 //  | 
         | 
   143 // Lets see how long it takes to match strings with   | 
         | 
   144 // 0.5 Million a's...it should be in the range of some  | 
         | 
   145 // seconds.  | 
         | 
   146   | 
         | 
   147 def time_needed[T](i: Int, code: => T) = { | 
         | 
   148   val start = System.nanoTime()  | 
         | 
   149   for (j <- 1 to i) code  | 
         | 
   150   val end = System.nanoTime()  | 
         | 
   151   (end - start)/(i * 1.0e9)  | 
         | 
   152 }  | 
         | 
   153   | 
         | 
   154 for (i <- 0 to 5000000 by 500000) { | 
         | 
   155   println(i + " " + "%.5f".format(time_needed(2, matcher(EVIL, "a" * i))))  | 
         | 
   156 }  | 
         | 
   157 */  | 
         | 
   158   | 
         | 
   159 }  |