main_testing4/knight1.scala
changeset 433 6af86ba1208f
parent 424 daf561a83ba6
equal deleted inserted replaced
432:de701b64a4e0 433:6af86ba1208f
     1 // Main Part 4 about finding Knight's tours
     1 // Part 1 about finding and counting Knight's tours
     2 //==========================================
     2 //==================================================
     3 import scala.annotation.tailrec
       
     4 
     3 
     5 
     4 object M4a {   // for preparing the jar
     6 object M4a {
       
     7 
       
     8 // If you need any auxiliary functions, feel free to 
       
     9 // implement them, but do not make any changes to the
       
    10 // templates below. Also have a look whether the functions
       
    11 // at the end of the file are of any help.
       
    12 
       
    13 
       
    14 
     5 
    15 type Pos = (Int, Int)    // a position on a chessboard 
     6 type Pos = (Int, Int)    // a position on a chessboard 
    16 type Path = List[Pos]    // a path...a list of positions
     7 type Path = List[Pos]    // a path...a list of positions
    17 
     8 
    18 //(1) Complete the function that tests whether the position x
       
    19 //    is inside the board and not yet element in the path.
       
    20 
     9 
    21 def is_legal(dim: Int, path: Path, x: Pos) : Boolean = {
    10 // for measuring time in the JAR
    22   (x._1 < dim) && (x._2 < dim) && (!path.contains(x))
       
    23 }
       
    24 
       
    25 
       
    26 
       
    27 //(2) Complete the function that calculates for a position x
       
    28 //    all legal onward moves that are not already in the path. 
       
    29 //    The moves should be ordered in a "clockwise" manner.
       
    30  
       
    31 def legal_moves(dim: Int, path: Path, x: Pos) : List[Pos] = {
       
    32     val movesets = List(
       
    33     (x._1 + 1, x._2 + 2),
       
    34     (x._1 + 2, x._2 + 1),
       
    35     (x._1 + 2, x._2 - 1),
       
    36     (x._1 + 1, x._2 - 2),
       
    37     (x._1 - 1, x._2 - 2),
       
    38     (x._1 - 2, x._2 - 1),
       
    39     (x._1 - 2, x._2 + 1),
       
    40     (x._1 - 1, x._2 + 2)
       
    41   )
       
    42   movesets.filter(is_legal(dim, path, _))
       
    43 }
       
    44 
       
    45 
       
    46 //some testcases
       
    47 //
       
    48 //assert(legal_moves(8, Nil, (2,2)) == 
       
    49 //  List((3,4), (4,3), (4,1), (3,0), (1,0), (0,1), (0,3), (1,4)))
       
    50 //assert(legal_moves(8, Nil, (7,7)) == List((6,5), (5,6)))
       
    51 //assert(legal_moves(8, List((4,1), (1,0)), (2,2)) == 
       
    52 //  List((3,4), (4,3), (3,0), (0,1), (0,3), (1,4)))
       
    53 //assert(legal_moves(8, List((6,6)), (7,7)) == List((6,5), (5,6)))
       
    54 
       
    55 
       
    56 //(3) Complete the two recursive functions below. 
       
    57 //    They exhaustively search for knight's tours starting from the 
       
    58 //    given path. The first function counts all possible tours, 
       
    59 //    and the second collects all tours in a list of paths.
       
    60 
       
    61 def count_tours(dim: Int, path: Path) : Int = {
       
    62   if (dim <= 4) 0 else {
       
    63     if (path.length >= (dim * dim)) 1 else {
       
    64       val movesets = legal_moves(dim, path, path.head)
       
    65       (for (move <- movesets) yield count_tours(dim, move :: path)).sum
       
    66     }
       
    67   }
       
    68 }
       
    69 
       
    70 def enum_tours(dim: Int, path: Path) : List[Path] = {
       
    71   if (dim <= 4) Nil else {
       
    72     if (path.length >= (dim * dim)) List(path) else {
       
    73       val movesets = legal_moves(dim, path, path.head)
       
    74       (for (move <- movesets) yield enum_tours(dim, move :: path)).flatten
       
    75     }
       
    76   }
       
    77 }
       
    78 
       
    79 
       
    80 //(4) Implement a first-function that finds the first 
       
    81 //    element, say x, in the list xs where f is not None. 
       
    82 //    In that case Return f(x), otherwise None. If possible,
       
    83 //    calculate f(x) only once.
       
    84 
       
    85 @tailrec
       
    86 def first(xs: List[Pos], f: Pos => Option[Path]) : Option[Path] = {
       
    87   xs match {
       
    88     case Nil => None
       
    89     case head :: rest => {
       
    90       val result = f(head)
       
    91       if (result.isEmpty) first(rest, f) else result
       
    92     }
       
    93   }
       
    94 }
       
    95 
       
    96 
       
    97 // testcases
       
    98 //
       
    99 //def foo(x: (Int, Int)) = if (x._1 > 3) Some(List(x)) else None
       
   100 //
       
   101 //first(List((1, 0),(2, 0),(3, 0),(4, 0)), foo)   // Some(List((4,0)))
       
   102 //first(List((1, 0),(2, 0),(3, 0)), foo)          // None
       
   103 
       
   104 
       
   105 //(5) Implement a function that uses the first-function from (4) for
       
   106 //    trying out onward moves, and searches recursively for a
       
   107 //    knight tour on a dim * dim-board.
       
   108 
       
   109 def first_tour(dim: Int, path: Path) : Option[Path] = ???
       
   110  
       
   111 
       
   112 
       
   113 /* Helper functions
       
   114 
       
   115 
       
   116 // for measuring time
       
   117 def time_needed[T](code: => T) : T = {
    11 def time_needed[T](code: => T) : T = {
   118   val start = System.nanoTime()
    12   val start = System.nanoTime()
   119   val result = code
    13   val result = code
   120   val end = System.nanoTime()
    14   val end = System.nanoTime()
   121   println(f"Time needed: ${(end - start) / 1.0e9}%3.3f secs.")
    15   println(f"Time needed: ${(end - start) / 1.0e9}%3.3f secs.")
   122   result
    16   result
   123 }
    17 }
   124 
       
   125 // can be called for example with
       
   126 //
       
   127 //     time_needed(count_tours(dim, List((0, 0))))
       
   128 //
       
   129 // in order to print out the time that is needed for 
       
   130 // running count_tours
       
   131 
       
   132 
    18 
   133 // for printing a board
    19 // for printing a board
   134 def print_board(dim: Int, path: Path): Unit = {
    20 def print_board(dim: Int, path: Path): Unit = {
   135   println()
    21   println()
   136   for (i <- 0 until dim) {
    22   for (i <- 0 until dim) {
   139     }
    25     }
   140     println()
    26     println()
   141   } 
    27   } 
   142 }
    28 }
   143 
    29 
       
    30 def is_legal(dim: Int, path: Path, x: Pos): Boolean = 
       
    31   0 <= x._1 && 0 <= x._2 && x._1 < dim && x._2 < dim && !path.contains(x)
   144 
    32 
       
    33 // testcases
       
    34 //assert(is_legal(8, Nil, (3, 4)) == true)
       
    35 //assert(is_legal(8, List((4, 1), (1, 0)), (4, 1)) == false)
       
    36 //assert(is_legal(2, Nil, (0, 0)) == true)
       
    37 
       
    38 
       
    39 def add_pair(x: Pos, y: Pos): Pos = 
       
    40   (x._1 + y._1, x._2 + y._2)
       
    41 
       
    42 def moves(x: Pos): List[Pos] = 
       
    43   List(( 1,  2),( 2,  1),( 2, -1),( 1, -2),
       
    44        (-1, -2),(-2, -1),(-2,  1),(-1,  2)).map(add_pair(x, _))
       
    45 
       
    46 def legal_moves(dim: Int, path: Path, x: Pos): List[Pos] = 
       
    47   moves(x).filter(is_legal(dim, path, _))
       
    48 
       
    49 
       
    50 
       
    51 // testcases
       
    52 //assert(legal_moves(8, Nil, (2,2)) == 
       
    53 //  List((3,4), (4,3), (4,1), (3,0), (1,0), (0,1), (0,3), (1,4)))
       
    54 //assert(legal_moves(8, Nil, (7,7)) == List((6,5), (5,6)))
       
    55 //assert(legal_moves(8, List((4,1), (1,0)), (2,2)) == 
       
    56 //  List((3,4), (4,3), (3,0), (0,1), (0,3), (1,4)))
       
    57 //assert(legal_moves(8, List((6,6)), (7,7)) == List((6,5), (5,6)))
       
    58 //assert(legal_moves(8, Nil, (0,1)) == List((1,3), (2,2), (2,0)))
       
    59 //assert(legal_moves(1, Nil, (0,0)) == List())
       
    60 //assert(legal_moves(2, Nil, (0,0)) == List())
       
    61 //assert(legal_moves(3, Nil, (0,0)) == List((1,2), (2,1)))
       
    62 
       
    63 
       
    64 def tcount_tours(dim: Int, path: Path): Int = {
       
    65   if (path.length == dim * dim) 1
       
    66   else 
       
    67     (for (x <- legal_moves(dim, path, path.head)) yield tcount_tours(dim, x::path)).sum
       
    68 }
       
    69 
       
    70 def count_tours(dim: Int, path: Path) =
       
    71   time_needed(tcount_tours(dim: Int, path: Path))
       
    72 
       
    73 
       
    74 def tenum_tours(dim: Int, path: Path): List[Path] = {
       
    75   if (path.length == dim * dim) List(path)
       
    76   else 
       
    77     (for (x <- legal_moves(dim, path, path.head)) yield tenum_tours(dim, x::path)).flatten
       
    78 }
       
    79 
       
    80 def enum_tours(dim: Int, path: Path) =
       
    81   time_needed(tenum_tours(dim: Int, path: Path))
       
    82 
       
    83 // test cases
       
    84 
       
    85 /*
       
    86 def count_all_tours(dim: Int) = {
       
    87   for (i <- (0 until dim).toList; 
       
    88        j <- (0 until dim).toList) yield count_tours(dim, List((i, j)))
       
    89 }
       
    90 
       
    91 def enum_all_tours(dim: Int): List[Path] = {
       
    92   (for (i <- (0 until dim).toList; 
       
    93         j <- (0 until dim).toList) yield enum_tours(dim, List((i, j)))).flatten
       
    94 }
       
    95 
       
    96 
       
    97 println("Number of tours starting from (0, 0)")
       
    98 
       
    99 for (dim <- 1 to 5) {
       
   100   println(s"${dim} x ${dim} " + time_needed(0, count_tours(dim, List((0, 0)))))
       
   101 }
       
   102 
       
   103 println("Number of tours starting from all fields")
       
   104 
       
   105 for (dim <- 1 to 5) {
       
   106   println(s"${dim} x ${dim} " + time_needed(0, count_all_tours(dim)))
       
   107 }
       
   108 
       
   109 for (dim <- 1 to 5) {
       
   110   val ts = enum_tours(dim, List((0, 0)))
       
   111   println(s"${dim} x ${dim} ")   
       
   112   if (ts != Nil) {
       
   113     print_board(dim, ts.head)
       
   114     println(ts.head)
       
   115   }
       
   116 }
   145 */
   117 */
   146 
   118 
       
   119 
       
   120 def first(xs: List[Pos], f: Pos => Option[Path]): Option[Path] = xs match {
       
   121   case Nil => None
       
   122   case x::xs => {
       
   123     val result = f(x)
       
   124     if (result.isDefined) result else first(xs, f)
       
   125   }
   147 }
   126 }
       
   127 
       
   128 // test cases
       
   129 //def foo(x: (Int, Int)) = if (x._1 > 3) Some(List(x)) else None
       
   130 //
       
   131 //first(List((1, 0),(2, 0),(3, 0),(4, 0)), foo)
       
   132 //first(List((1, 0),(2, 0),(3, 0)), foo)
       
   133 
       
   134 
       
   135 def tfirst_tour(dim: Int, path: Path): Option[Path] = {
       
   136   if (path.length == dim * dim) Some(path)
       
   137   else
       
   138     first(legal_moves(dim, path, path.head), (x:Pos) => tfirst_tour(dim, x::path))
       
   139 }
       
   140 
       
   141 def first_tour(dim: Int, path: Path) = 
       
   142   time_needed(tfirst_tour(dim: Int, path: Path))
       
   143 
       
   144 
       
   145 /*
       
   146 for (dim <- 1 to 8) {
       
   147   val t = first_tour(dim, List((0, 0)))
       
   148   println(s"${dim} x ${dim} " + (if (t == None) "" else { print_board(dim, t.get) ; "" }))
       
   149 }
       
   150 */
       
   151 
       
   152 // 15 secs for 8 x 8
       
   153 //val ts1 = time_needed(0,first_tour(8, List((0, 0))).get)
       
   154 //??val ts1 = time_needed(0,first_tour(8, List((1, 1))).get)
       
   155 
       
   156 // no result for 4 x 4
       
   157 //val ts2 = time_needed(0, first_tour(4, List((0, 0))))
       
   158 
       
   159 // 0.3 secs for 6 x 6
       
   160 //val ts3 = time_needed(0, first_tour(6, List((0, 0))))
       
   161 
       
   162 // 15 secs for 8 x 8
       
   163 //time_needed(0, print_board(8, first_tour(8, List((0, 0))).get))
       
   164 
       
   165 
       
   166 
       
   167 
       
   168 
       
   169 }
       
   170 
       
   171