core_testing1/collatz.scala
changeset 433 6af86ba1208f
parent 401 9471c3b7ea02
child 463 0315d9983cd0
equal deleted inserted replaced
432:de701b64a4e0 433:6af86ba1208f
     1 // Core Part 1 about the 3n+1 conjecture
     1 // Core Part 1 about the 3n+1 conjecture
     2 //==================================
     2 //============================================
     3 
     3 
     4 // generate jar with
     4 object C1 {
     5 //   > scala -d collatz.jar  collatz.scala
       
     6 
     5 
     7 object C1 { // for purposes of generating a jar
     6 // ADD YOUR CODE BELOW
       
     7 //======================
     8 
     8 
     9 def collatz(n: Long): Long =
     9 // test1 7 Nov
       
    10 // test2
       
    11 // test3
       
    12 // test4
       
    13 
       
    14 
       
    15 //(1) 
       
    16 def collatz(n: Long) : Long = 
    10   if (n == 1) 0 else
    17   if (n == 1) 0 else
    11     if (n % 2 == 0) 1 + collatz(n / 2) else 
    18     if (n % 2 == 0) 1 + collatz(n / 2) else 
    12       1 + collatz(3 * n + 1)
    19       1 + collatz(3 * n + 1)
    13 
    20 
       
    21 
       
    22 //(2) 
       
    23 //def collatz_max(bnd: Long) : (Long, Long) = {
       
    24 //  val all = for (i <- (1L to bnd)) yield (collatz(i), i)
       
    25 //  all.maxBy(_._1)
       
    26 //}
    14 
    27 
    15 def collatz_max(bnd: Long): (Long, Long) = {
    28 def collatz_max(bnd: Long): (Long, Long) = {
    16   val all = for (i <- (1L to bnd)) yield (collatz(i), i)
    29   val all = for (i <- (1L to bnd)) yield (collatz(i), i)
    17   all.maxBy(_._1)
    30   all.maxBy(_._1)
    18 }
    31 }
    19 
    32 
    20 //collatz_max(1000000)
       
    21 
    33 
    22 
    34 
    23 /* some test cases
    35 //(3)
    24 val bnds = List(10, 100, 1000, 10000, 100000, 1000000)
       
    25 
    36 
    26 for (bnd <- bnds) {
    37 def is_pow_of_two(n: Long) : Boolean = (n & (n - 1)) == 0
    27   val (steps, max) = collatz_max(bnd)
       
    28   println(s"In the range of 1 - ${bnd} the number ${max} needs the maximum steps of ${steps}")
       
    29 }
       
    30 
    38 
    31 */
    39 def is_hard(n: Long) : Boolean = is_pow_of_two(3 * n + 1)
    32 
    40 
    33 
    41 def last_odd(n: Long) : Long = if (is_hard(n)) n else
    34 def is_pow(n: Long) : Boolean = (n & (n - 1)) == 0
       
    35 
       
    36 def is_hard(n: Long) : Boolean = is_pow(3 * n + 1)
       
    37 
       
    38 def last_odd(n: Long) : Long = 
       
    39   if (is_hard(n)) n else
       
    40     if (n % 2 == 0) last_odd(n / 2) else 
    42     if (n % 2 == 0) last_odd(n / 2) else 
    41       last_odd(3 * n + 1)
    43       last_odd(3 * n + 1)
    42 
       
    43 
       
    44 
       
    45 //for (i <- 130 to 10000) println(s"$i: ${last_odd(i)}")
       
    46 //for (i <- 1 to 100) println(s"$i: ${collatz(i)}")
       
    47 
    44 
    48 }
    45 }
    49 
    46 
    50 
    47 
    51 
    48 
       
    49 // This template code is subject to copyright 
       
    50 // by King's College London, 2022. Do not 
       
    51 // make the template code public in any shape 
       
    52 // or form, and do not exchange it with other 
       
    53 // students under any circumstance.