solutions4/knight1.scala
changeset 346 663c2a9108d1
parent 326 e5453add7df6
equal deleted inserted replaced
345:40657f9a4e4a 346:663c2a9108d1
       
     1 // Part 1 about finding and counting Knight's tours
       
     2 //==================================================
       
     3 
       
     4 object CW8a {   // for preparing the jar
       
     5 
       
     6 type Pos = (Int, Int)    // a position on a chessboard 
       
     7 type Path = List[Pos]    // a path...a list of positions
       
     8 
       
     9 
       
    10 // for measuring time in the JAR
       
    11 def time_needed[T](code: => T) : T = {
       
    12   val start = System.nanoTime()
       
    13   val result = code
       
    14   val end = System.nanoTime()
       
    15   println(f"Time needed: ${(end - start) / 1.0e9}%3.3f secs.")
       
    16   result
       
    17 }
       
    18 
       
    19 // for printing a board
       
    20 def print_board(dim: Int, path: Path): Unit = {
       
    21   println
       
    22   for (i <- 0 until dim) {
       
    23     for (j <- 0 until dim) {
       
    24       print(f"${path.reverse.indexOf((j, dim - i - 1))}%3.0f ")
       
    25     }
       
    26     println
       
    27   } 
       
    28 }
       
    29 
       
    30 def is_legal(dim: Int, path: Path, x: Pos): Boolean = 
       
    31   0 <= x._1 && 0 <= x._2 && x._1 < dim && x._2 < dim && !path.contains(x)
       
    32 
       
    33 // testcases
       
    34 //assert(is_legal(8, Nil, (3, 4)) == true)
       
    35 //assert(is_legal(8, List((4, 1), (1, 0)), (4, 1)) == false)
       
    36 //assert(is_legal(2, Nil, (0, 0)) == true)
       
    37 
       
    38 
       
    39 def add_pair(x: Pos, y: Pos): Pos = 
       
    40   (x._1 + y._1, x._2 + y._2)
       
    41 
       
    42 def moves(x: Pos): List[Pos] = 
       
    43   List(( 1,  2),( 2,  1),( 2, -1),( 1, -2),
       
    44        (-1, -2),(-2, -1),(-2,  1),(-1,  2)).map(add_pair(x, _))
       
    45 
       
    46 // 1 mark
       
    47 
       
    48 def legal_moves(dim: Int, path: Path, x: Pos): List[Pos] = 
       
    49   moves(x).filter(is_legal(dim, path, _))
       
    50 
       
    51 
       
    52 
       
    53 // testcases
       
    54 //assert(legal_moves(8, Nil, (2,2)) == 
       
    55 //  List((3,4), (4,3), (4,1), (3,0), (1,0), (0,1), (0,3), (1,4)))
       
    56 //assert(legal_moves(8, Nil, (7,7)) == List((6,5), (5,6)))
       
    57 //assert(legal_moves(8, List((4,1), (1,0)), (2,2)) == 
       
    58 //  List((3,4), (4,3), (3,0), (0,1), (0,3), (1,4)))
       
    59 //assert(legal_moves(8, List((6,6)), (7,7)) == List((6,5), (5,6)))
       
    60 //assert(legal_moves(8, Nil, (0,1)) == List((1,3), (2,2), (2,0)))
       
    61 //assert(legal_moves(1, Nil, (0,0)) == List())
       
    62 //assert(legal_moves(2, Nil, (0,0)) == List())
       
    63 //assert(legal_moves(3, Nil, (0,0)) == List((1,2), (2,1)))
       
    64 
       
    65 // 2 marks
       
    66 
       
    67 def tcount_tours(dim: Int, path: Path): Int = {
       
    68   if (path.length == dim * dim) 1
       
    69   else 
       
    70     (for (x <- legal_moves(dim, path, path.head)) yield tcount_tours(dim, x::path)).sum
       
    71 }
       
    72 
       
    73 def count_tours(dim: Int, path: Path) =
       
    74   time_needed(tcount_tours(dim: Int, path: Path))
       
    75 
       
    76 
       
    77 def tenum_tours(dim: Int, path: Path): List[Path] = {
       
    78   if (path.length == dim * dim) List(path)
       
    79   else 
       
    80     (for (x <- legal_moves(dim, path, path.head)) yield tenum_tours(dim, x::path)).flatten
       
    81 }
       
    82 
       
    83 def enum_tours(dim: Int, path: Path) =
       
    84   time_needed(tenum_tours(dim: Int, path: Path))
       
    85 
       
    86 // test cases
       
    87 
       
    88 /*
       
    89 def count_all_tours(dim: Int) = {
       
    90   for (i <- (0 until dim).toList; 
       
    91        j <- (0 until dim).toList) yield count_tours(dim, List((i, j)))
       
    92 }
       
    93 
       
    94 def enum_all_tours(dim: Int): List[Path] = {
       
    95   (for (i <- (0 until dim).toList; 
       
    96         j <- (0 until dim).toList) yield enum_tours(dim, List((i, j)))).flatten
       
    97 }
       
    98 
       
    99 
       
   100 println("Number of tours starting from (0, 0)")
       
   101 
       
   102 for (dim <- 1 to 5) {
       
   103   println(s"${dim} x ${dim} " + time_needed(0, count_tours(dim, List((0, 0)))))
       
   104 }
       
   105 
       
   106 println("Number of tours starting from all fields")
       
   107 
       
   108 for (dim <- 1 to 5) {
       
   109   println(s"${dim} x ${dim} " + time_needed(0, count_all_tours(dim)))
       
   110 }
       
   111 
       
   112 for (dim <- 1 to 5) {
       
   113   val ts = enum_tours(dim, List((0, 0)))
       
   114   println(s"${dim} x ${dim} ")   
       
   115   if (ts != Nil) {
       
   116     print_board(dim, ts.head)
       
   117     println(ts.head)
       
   118   }
       
   119 }
       
   120 */
       
   121 
       
   122 // 1 mark
       
   123 
       
   124 def first(xs: List[Pos], f: Pos => Option[Path]): Option[Path] = xs match {
       
   125   case Nil => None
       
   126   case x::xs => {
       
   127     val result = f(x)
       
   128     if (result.isDefined) result else first(xs, f)
       
   129   }
       
   130 }
       
   131 
       
   132 // test cases
       
   133 //def foo(x: (Int, Int)) = if (x._1 > 3) Some(List(x)) else None
       
   134 //
       
   135 //first(List((1, 0),(2, 0),(3, 0),(4, 0)), foo)
       
   136 //first(List((1, 0),(2, 0),(3, 0)), foo)
       
   137 
       
   138 
       
   139 // 1 mark
       
   140 
       
   141 def tfirst_tour(dim: Int, path: Path): Option[Path] = {
       
   142   if (path.length == dim * dim) Some(path)
       
   143   else
       
   144     first(legal_moves(dim, path, path.head), (x:Pos) => tfirst_tour(dim, x::path))
       
   145 }
       
   146 
       
   147 def first_tour(dim: Int, path: Path) = 
       
   148   time_needed(tfirst_tour(dim: Int, path: Path))
       
   149 
       
   150 
       
   151 /*
       
   152 for (dim <- 1 to 8) {
       
   153   val t = first_tour(dim, List((0, 0)))
       
   154   println(s"${dim} x ${dim} " + (if (t == None) "" else { print_board(dim, t.get) ; "" }))
       
   155 }
       
   156 */
       
   157 
       
   158 // 15 secs for 8 x 8
       
   159 //val ts1 = time_needed(0,first_tour(8, List((0, 0))).get)
       
   160 //val ts1 = time_needed(0,first_tour(8, List((1, 1))).get)
       
   161 
       
   162 // no result for 4 x 4
       
   163 //val ts2 = time_needed(0, first_tour(4, List((0, 0))))
       
   164 
       
   165 // 0.3 secs for 6 x 6
       
   166 //val ts3 = time_needed(0, first_tour(6, List((0, 0))))
       
   167 
       
   168 // 15 secs for 8 x 8
       
   169 //time_needed(0, print_board(8, first_tour(8, List((0, 0))).get))
       
   170 
       
   171 
       
   172 
       
   173 
       
   174 
       
   175 }
       
   176 
       
   177