1 // Part 1 about finding and counting Knight's tours |
|
2 //================================================== |
|
3 |
|
4 object CW8a { // for preparing the jar |
|
5 |
|
6 type Pos = (Int, Int) // a position on a chessboard |
|
7 type Path = List[Pos] // a path...a list of positions |
|
8 |
|
9 |
|
10 // for measuring time in the JAR |
|
11 def time_needed[T](code: => T) : T = { |
|
12 val start = System.nanoTime() |
|
13 val result = code |
|
14 val end = System.nanoTime() |
|
15 println(f"Time needed: ${(end - start) / 1.0e9}%3.3f secs.") |
|
16 result |
|
17 } |
|
18 |
|
19 // for printing a board |
|
20 def print_board(dim: Int, path: Path): Unit = { |
|
21 println |
|
22 for (i <- 0 until dim) { |
|
23 for (j <- 0 until dim) { |
|
24 print(f"${path.reverse.indexOf((j, dim - i - 1))}%3.0f ") |
|
25 } |
|
26 println |
|
27 } |
|
28 } |
|
29 |
|
30 def is_legal(dim: Int, path: Path, x: Pos): Boolean = |
|
31 0 <= x._1 && 0 <= x._2 && x._1 < dim && x._2 < dim && !path.contains(x) |
|
32 |
|
33 // testcases |
|
34 //assert(is_legal(8, Nil, (3, 4)) == true) |
|
35 //assert(is_legal(8, List((4, 1), (1, 0)), (4, 1)) == false) |
|
36 //assert(is_legal(2, Nil, (0, 0)) == true) |
|
37 |
|
38 |
|
39 def add_pair(x: Pos, y: Pos): Pos = |
|
40 (x._1 + y._1, x._2 + y._2) |
|
41 |
|
42 def moves(x: Pos): List[Pos] = |
|
43 List(( 1, 2),( 2, 1),( 2, -1),( 1, -2), |
|
44 (-1, -2),(-2, -1),(-2, 1),(-1, 2)).map(add_pair(x, _)) |
|
45 |
|
46 // 1 mark |
|
47 |
|
48 def legal_moves(dim: Int, path: Path, x: Pos): List[Pos] = |
|
49 moves(x).filter(is_legal(dim, path, _)) |
|
50 |
|
51 |
|
52 |
|
53 // testcases |
|
54 //assert(legal_moves(8, Nil, (2,2)) == |
|
55 // List((3,4), (4,3), (4,1), (3,0), (1,0), (0,1), (0,3), (1,4))) |
|
56 //assert(legal_moves(8, Nil, (7,7)) == List((6,5), (5,6))) |
|
57 //assert(legal_moves(8, List((4,1), (1,0)), (2,2)) == |
|
58 // List((3,4), (4,3), (3,0), (0,1), (0,3), (1,4))) |
|
59 //assert(legal_moves(8, List((6,6)), (7,7)) == List((6,5), (5,6))) |
|
60 //assert(legal_moves(8, Nil, (0,1)) == List((1,3), (2,2), (2,0))) |
|
61 //assert(legal_moves(1, Nil, (0,0)) == List()) |
|
62 //assert(legal_moves(2, Nil, (0,0)) == List()) |
|
63 //assert(legal_moves(3, Nil, (0,0)) == List((1,2), (2,1))) |
|
64 |
|
65 // 2 marks |
|
66 |
|
67 def tcount_tours(dim: Int, path: Path): Int = { |
|
68 if (path.length == dim * dim) 1 |
|
69 else |
|
70 (for (x <- legal_moves(dim, path, path.head)) yield tcount_tours(dim, x::path)).sum |
|
71 } |
|
72 |
|
73 def count_tours(dim: Int, path: Path) = |
|
74 time_needed(tcount_tours(dim: Int, path: Path)) |
|
75 |
|
76 |
|
77 def tenum_tours(dim: Int, path: Path): List[Path] = { |
|
78 if (path.length == dim * dim) List(path) |
|
79 else |
|
80 (for (x <- legal_moves(dim, path, path.head)) yield tenum_tours(dim, x::path)).flatten |
|
81 } |
|
82 |
|
83 def enum_tours(dim: Int, path: Path) = |
|
84 time_needed(tenum_tours(dim: Int, path: Path)) |
|
85 |
|
86 // test cases |
|
87 |
|
88 /* |
|
89 def count_all_tours(dim: Int) = { |
|
90 for (i <- (0 until dim).toList; |
|
91 j <- (0 until dim).toList) yield count_tours(dim, List((i, j))) |
|
92 } |
|
93 |
|
94 def enum_all_tours(dim: Int): List[Path] = { |
|
95 (for (i <- (0 until dim).toList; |
|
96 j <- (0 until dim).toList) yield enum_tours(dim, List((i, j)))).flatten |
|
97 } |
|
98 |
|
99 |
|
100 println("Number of tours starting from (0, 0)") |
|
101 |
|
102 for (dim <- 1 to 5) { |
|
103 println(s"${dim} x ${dim} " + time_needed(0, count_tours(dim, List((0, 0))))) |
|
104 } |
|
105 |
|
106 println("Number of tours starting from all fields") |
|
107 |
|
108 for (dim <- 1 to 5) { |
|
109 println(s"${dim} x ${dim} " + time_needed(0, count_all_tours(dim))) |
|
110 } |
|
111 |
|
112 for (dim <- 1 to 5) { |
|
113 val ts = enum_tours(dim, List((0, 0))) |
|
114 println(s"${dim} x ${dim} ") |
|
115 if (ts != Nil) { |
|
116 print_board(dim, ts.head) |
|
117 println(ts.head) |
|
118 } |
|
119 } |
|
120 */ |
|
121 |
|
122 // 1 mark |
|
123 |
|
124 def first(xs: List[Pos], f: Pos => Option[Path]): Option[Path] = xs match { |
|
125 case Nil => None |
|
126 case x::xs => { |
|
127 val result = f(x) |
|
128 if (result.isDefined) result else first(xs, f) |
|
129 } |
|
130 } |
|
131 |
|
132 // test cases |
|
133 //def foo(x: (Int, Int)) = if (x._1 > 3) Some(List(x)) else None |
|
134 // |
|
135 //first(List((1, 0),(2, 0),(3, 0),(4, 0)), foo) |
|
136 //first(List((1, 0),(2, 0),(3, 0)), foo) |
|
137 |
|
138 |
|
139 // 1 mark |
|
140 |
|
141 def tfirst_tour(dim: Int, path: Path): Option[Path] = { |
|
142 if (path.length == dim * dim) Some(path) |
|
143 else |
|
144 first(legal_moves(dim, path, path.head), (x:Pos) => tfirst_tour(dim, x::path)) |
|
145 } |
|
146 |
|
147 def first_tour(dim: Int, path: Path) = |
|
148 time_needed(tfirst_tour(dim: Int, path: Path)) |
|
149 |
|
150 |
|
151 /* |
|
152 for (dim <- 1 to 8) { |
|
153 val t = first_tour(dim, List((0, 0))) |
|
154 println(s"${dim} x ${dim} " + (if (t == None) "" else { print_board(dim, t.get) ; "" })) |
|
155 } |
|
156 */ |
|
157 |
|
158 // 15 secs for 8 x 8 |
|
159 //val ts1 = time_needed(0,first_tour(8, List((0, 0))).get) |
|
160 //val ts1 = time_needed(0,first_tour(8, List((1, 1))).get) |
|
161 |
|
162 // no result for 4 x 4 |
|
163 //val ts2 = time_needed(0, first_tour(4, List((0, 0)))) |
|
164 |
|
165 // 0.3 secs for 6 x 6 |
|
166 //val ts3 = time_needed(0, first_tour(6, List((0, 0)))) |
|
167 |
|
168 // 15 secs for 8 x 8 |
|
169 //time_needed(0, print_board(8, first_tour(8, List((0, 0))).get)) |
|
170 |
|
171 |
|
172 |
|
173 |
|
174 |
|
175 } |
|
176 |
|
177 |
|