pre_testing4/knight1.scala
changeset 346 663c2a9108d1
parent 326 e5453add7df6
equal deleted inserted replaced
345:40657f9a4e4a 346:663c2a9108d1
       
     1 // Preliminary Part about finding Knight's tours
       
     2 //===============================================
       
     3 
       
     4 
       
     5 object CW9a {
       
     6 
       
     7 // If you need any auxiliary function, feel free to 
       
     8 // implement it, but do not make any changes to the
       
     9 // templates below. Also have a look whether the functions
       
    10 // at the end are of any help.
       
    11 
       
    12 
       
    13 
       
    14 type Pos = (Int, Int)    // a position on a chessboard 
       
    15 type Path = List[Pos]    // a path...a list of positions
       
    16 
       
    17 //(1) Complete the function that tests whether the position x
       
    18 //    is inside the board and not yet element in the path.
       
    19 
       
    20 def is_legal(dim: Int, path: Path, x: Pos) : Boolean = { 
       
    21   if ((!(path.contains(x))) && (x._1 >= 0) && (x._2 >= 0) && (x._1 < dim) && (x._2 < dim))
       
    22     true
       
    23   else false
       
    24 }
       
    25 
       
    26 //(2) Complete the function that calculates for a position x
       
    27 //    all legal onward moves that are not already in the path. 
       
    28 //    The moves should be ordered in a "clockwise" manner.
       
    29  
       
    30 
       
    31 def legal_moves(dim: Int, path: Path, x: Pos) : List[Pos] = {//List[Pos]
       
    32   val changes = List((1,2),(2,1),(2,-1),(1,-2),(-1,-2),(-2,-1),(-2,1),(-1,2))
       
    33   val returnList = (for ((y,z) <- changes) yield(
       
    34     //println(y,z)-2,-1
       
    35     if ((is_legal(dim,path,((x._1 + y) , (x._2 + z)))) == true)
       
    36       Some(x._1 + y , x._2 + z)
       
    37     else
       
    38       None
       
    39   ))
       
    40   returnList.flatten
       
    41 }
       
    42 
       
    43 
       
    44 //some testcases
       
    45 //
       
    46 //assert(legal_moves(8, Nil, (2,2)) == 
       
    47   //List((3,4), (4,3), (4,1), (3,0), (1,0), (0,1), (0,3), (1,4)))
       
    48 //assert(legal_moves(8, Nil, (7,7)) == List((6,5), (5,6)))
       
    49 //assert(legal_moves(8, List((4,1), (1,0)), (2,2)) == 
       
    50 //  List((3,4), (4,3), (3,0), (0,1), (0,3), (1,4)))
       
    51 //assert(legal_moves(8, List((6,6)), (7,7)) == List((6,5), (5,6)))
       
    52 
       
    53 
       
    54 //(3) Complete the two recursive functions below. 
       
    55 //    They exhaustively search for knight's tours starting from the 
       
    56 //    given path. The first function counts all possible tours, 
       
    57 //    and the second collects all tours in a list of paths.
       
    58 
       
    59 def count_tours(dim: Int, path: Path) : Int = (dim,path) match {//Int
       
    60   case (_, Nil) => 0
       
    61   case (0, path) => 0
       
    62   case (dim, path) => { if (legal_moves(dim,path, path.head).size == 0) 
       
    63 				if(path.size < dim*dim) 
       
    64 					0 
       
    65 				else 
       
    66 					1
       
    67 			else (for (j <- legal_moves(dim,path, path.head)) yield count_tours(dim,j::path)).sum
       
    68 			}
       
    69 }
       
    70 
       
    71 def enum_tours(dim: Int, path: Path) : List[Path] = (dim,path) match {
       
    72   case (_, Nil) => Nil
       
    73   case (0, path) => Nil
       
    74   case (dim, path) =>	{ if (legal_moves(dim,path, path.head).size == 0) 
       
    75 				if(path.size < dim*dim) 
       
    76 					Nil
       
    77 				else 
       
    78 					List(path)
       
    79 			else (for (j <- legal_moves(dim,path, path.head)) yield enum_tours(dim,j::path)).flatten
       
    80 			}
       
    81 			
       
    82 }
       
    83 
       
    84 
       
    85 //(4) Implement a first-function that finds the first 
       
    86 //    element, say x, in the list xs where f is not None. 
       
    87 //    In that case Return f(x), otherwise None. If possible,
       
    88 //    calculate f(x) only once.
       
    89 
       
    90 //def first(xs: List[Pos], f: Pos => Option[Path]) : Option[Path] = ...
       
    91 
       
    92 
       
    93 // testcases
       
    94 //
       
    95 //def foo(x: (Int, Int)) = if (x._1 > 3) Some(List(x)) else None
       
    96 //
       
    97 //first(List((1, 0),(2, 0),(3, 0),(4, 0)), foo)   // Some(List((4,0)))
       
    98 //first(List((1, 0),(2, 0),(3, 0)), foo)          // None
       
    99 
       
   100 
       
   101 //(5) Implement a function that uses the first-function from (5) for
       
   102 //    trying out onward moves, and searches recursively for a
       
   103 //    knight tour on a dim * dim-board.
       
   104 
       
   105 
       
   106 //def first_tour(dim: Int, path: Path) : Option[Path] = ...
       
   107  
       
   108 
       
   109 
       
   110 
       
   111 
       
   112 
       
   113 /* Helper functions
       
   114 
       
   115 
       
   116 // for measuring time
       
   117 def time_needed[T](code: => T) : T = {
       
   118   val start = System.nanoTime()
       
   119   val result = code
       
   120   val end = System.nanoTime()
       
   121   println(f"Time needed: ${(end - start) / 1.0e9}%3.3f secs.")
       
   122   result
       
   123 }
       
   124 
       
   125 // can be called for example with
       
   126 //     time_needed(count_tours(dim, List((0, 0))))
       
   127 // in order to print out the time that is needed for 
       
   128 // running count_tours
       
   129 
       
   130 
       
   131 
       
   132 
       
   133 // for printing a board
       
   134 def print_board(dim: Int, path: Path): Unit = {
       
   135   println
       
   136   for (i <- 0 until dim) {
       
   137     for (j <- 0 until dim) {
       
   138       print(f"${path.reverse.indexOf((j, dim - i - 1))}%3.0f ")
       
   139     }
       
   140     println
       
   141   } 
       
   142 }
       
   143 
       
   144 
       
   145 */
       
   146 
       
   147 }