pre_templates3/postfix.scala
changeset 346 663c2a9108d1
parent 288 65731df141a5
equal deleted inserted replaced
345:40657f9a4e4a 346:663c2a9108d1
       
     1 // Shunting Yard Algorithm
       
     2 // by Edsger Dijkstra
       
     3 // ========================
       
     4 
       
     5 object CW8a {
       
     6 
       
     7 // type of tokens
       
     8 type Toks = List[String]
       
     9 
       
    10 // the operations in the basic version of the algorithm
       
    11 val ops = List("+", "-", "*", "/")
       
    12 
       
    13 // the precedences of the operators
       
    14 val precs = Map("+" -> 1,
       
    15 		"-" -> 1,
       
    16 		"*" -> 2,
       
    17 		"/" -> 2)
       
    18 
       
    19 // helper function for splitting strings into tokens
       
    20 def split(s: String) : Toks = s.split(" ").toList
       
    21 
       
    22 
       
    23 // (1) Implement below the shunting yard algorithm. The most
       
    24 // convenient way to this in Scala is to implement a recursive 
       
    25 // function and to heavily use pattern matching. The function syard 
       
    26 // takes some input tokens as first argument. The second and third 
       
    27 // arguments represent the stack and the output of the shunting yard 
       
    28 // algorithm.
       
    29 //
       
    30 // In the marking, you can assume the function is called only with 
       
    31 // an empty stack and an empty output list. You can also assume the
       
    32 // input os  only properly formatted (infix) arithmetic expressions
       
    33 // (all parentheses will be well-nested, the input only contains 
       
    34 // operators and numbers).
       
    35 
       
    36 // You can implement any additional helper function you need. I found 
       
    37 // it helpful to implement two auxiliary functions for the pattern matching:  
       
    38 // 
       
    39 
       
    40 def is_op(op: String) : Boolean = ???
       
    41 def prec(op1: String, op2: String) : Boolean = ???
       
    42 
       
    43 
       
    44 def syard(toks: Toks, st: Toks = Nil, out: Toks = Nil) : Toks = ???
       
    45 
       
    46 
       
    47 // test cases
       
    48 //syard(split("3 + 4 * ( 2 - 1 )"))  // 3 4 2 1 - * +
       
    49 //syard(split("10 + 12 * 33"))       // 10 12 33 * +
       
    50 //syard(split("( 5 + 7 ) * 2"))      // 5 7 + 2 *
       
    51 //syard(split("5 + 7 / 2"))          // 5 7 2 / +
       
    52 //syard(split("5 * 7 / 2"))          // 5 7 * 2 /
       
    53 //syard(split("9 + 24 / ( 7 - 3 )")) // 9 24 7 3 - / +
       
    54 
       
    55 //syard(split("3 + 4 + 5"))           // 3 4 + 5 +
       
    56 //syard(split("( ( 3 + 4 ) + 5 )"))    // 3 4 + 5 +
       
    57 //syard(split("( 3 + ( 4 + 5 ) )"))    // 3 4 5 + +
       
    58 //syard(split("( ( ( 3 ) ) + ( ( 4 + ( 5 ) ) ) )")) // 3 4 5 + +
       
    59 
       
    60  
       
    61 // (2) Implement a compute function that evaluates an input list
       
    62 // in postfix notation. This function takes a list of tokens
       
    63 // and a stack as argumenta. The function should produce the 
       
    64 // result as an integer using the stack. You can assume 
       
    65 // this function will be only called with proper postfix 
       
    66 // expressions.    
       
    67 
       
    68 def compute(toks: Toks, st: List[Int] = Nil) : Int = ???
       
    69 
       
    70 
       
    71 // test cases
       
    72 // compute(syard(split("3 + 4 * ( 2 - 1 )")))  // 7
       
    73 // compute(syard(split("10 + 12 * 33")))       // 406
       
    74 // compute(syard(split("( 5 + 7 ) * 2")))      // 24
       
    75 // compute(syard(split("5 + 7 / 2")))          // 8
       
    76 // compute(syard(split("5 * 7 / 2")))          // 17
       
    77 // compute(syard(split("9 + 24 / ( 7 - 3 )"))) // 15
       
    78 
       
    79 }
       
    80 
       
    81